Journal of Materials Science

, Volume 50, Issue 8, pp 3131–3138 | Cite as

Microstructure and properties of epitaxial Sr2FeMoO6 films containing SrMoO4 precipitates

  • Hakan Deniz
  • Daniele Preziosi
  • Marin Alexe
  • Dietrich Hesse
  • Christian Eisenschmidt
  • Georg Schmidt
  • Lucian Pintilie
Original Paper


Thin films of Sr2FeMoO6 (SFMO) were grown by pulsed laser deposition in non-optimized argon ambient pressures. The films were found to contain a high number of precipitates of foreign phases. The nature and microstructure of these phases were investigated in detail by high-resolution scanning transmission electron microscopy (STEM) and X-ray diffractometry (XRD). We found out that the dominant foreign phase embedded in the SFMO film matrix was SrMoO4 (SMO). Through STEM and XRD analysis, we determined that the SMO phase grows epitaxially with respect to the surrounding SFMO matrix and has a fairly good crystallinity. Although the SFMO films include many foreign precipitates, they still exhibit good conducting properties and moderate magnetization values. Tuning the growth of the SMO phase on top of SFMO films to obtain a natural tunnel barrier might pave the way for future applications of SFMO in spintronic devices.


Scanning Transmission Electron Microscopy CaWO4 SrMoO4 Scanning Transmission Electron Microscopy Image Epitaxial Thin Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the EU-FP7 project IFOX (Grant No. NMP3-LA-2010-246102).


  1. 1.
    Kobayashi KI, Kimura T, Sawada H, Terakura K, Tokura Y (1998) Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Nature 395:677–680CrossRefGoogle Scholar
  2. 2.
    Bibes M, Bouzehouane K, Barthelemy A, Besse M, Fusil S, Bowen M, Seneor P, Carrey J, Cros V, Vaures A, Contour JP, Fert A (2003) Tunnel magnetoresistance in nanojunctions based on Sr2FeMoO6. Appl Phys Lett 83:2629–2631CrossRefGoogle Scholar
  3. 3.
    Tomioka Y, Okuda T, Okimoto Y, Kumai R, Kobayashi KI, Tokura Y (2000) Magnetic and electronic properties of a single crystal of ordered double perovskite Sr2FeMoO6. Phys Rev B 61:422–427CrossRefGoogle Scholar
  4. 4.
    Balcells L, Navarro J, Bibes M, Roig A, Martinez B, Fontcuberta J (2001) Cationic ordering control of magnetization in Sr2FeMoO6 double perovskite. Appl Phys Lett 78:781–783CrossRefGoogle Scholar
  5. 5.
    Niebieskikwiat D, Caneiro A, Sanchez RD, Fontcuberta J (2001) Oxygen-induced grain boundary effects on magnetotransport properties of Sr2FeMoO6+δ. Phys Rev B 64:R180406CrossRefGoogle Scholar
  6. 6.
    Kim TH, Uehara M, Cheong SW, Lee S (1999) Large room-temperature intergrain magnetoresistance in double perovskite SrFe1-x(Mo or Re)xO3. Appl Phys Lett 74:1737–1739CrossRefGoogle Scholar
  7. 7.
    Asano H, Ogale SB, Garrison J, Orozco A, Li YH, Li E, Smolyaninova V, Galley C, Downes M, Rajeswari M, Ramesh R, Venkatesan T (1999) Pulsed-laser-deposited epitaxial Sr2FeMoO6-y thin films: positive and negative magnetoresistance regimes. Appl Phys Lett 74:3696–3698CrossRefGoogle Scholar
  8. 8.
    Manako T, Izumi M, Konishi Y, Kobayashi KI, Kawasaki M, Tokura Y (1999) Epitaxial thin films of ordered double perovskite Sr2FeMoO6. Appl Phys Lett 74:2215–2217CrossRefGoogle Scholar
  9. 9.
    Yin HQ, Zhou JS, Zhou JP, Dass R, McDevitt JT, Goodenough JB (1999) Intra- versus intergranular low- field magnetoresistance of Sr2FeMoO6 thin films. Appl Phys Lett 75:2812–2814CrossRefGoogle Scholar
  10. 10.
    Shinde SR, Ogale SB, Greene RL, Venkatesan T, Tsoi K, Cheong SW, Millis AJ (2003) Thin films of double perovskite Sr2FeMoO6: growth, optimization, and study of the physical and magnetotransport properties of films grown on single-crystalline and polycrystalline SrTiO3 substrates. J Appl Phys 93:1605–1612CrossRefGoogle Scholar
  11. 11.
    Westerburg W, Reisinger D, Jakob G (2000) Epitaxy and magnetotransport of Sr2FeMoO6 thin films. Phys Rev B 62:R767–R770CrossRefGoogle Scholar
  12. 12.
    Venimadhav A, Sher F, Attfield JP, Blamire MG (2004) Oxygen assisted deposition of Sr2FeMoO6 thin films on SrTiO3 (100). J Magn Magn Mater 269:101–105CrossRefGoogle Scholar
  13. 13.
    Besse M, Pailloux F, Barthélémy A, Bouzehouane K, Fert A, Olivier J, Durand O, Wyczisk F, Bisaro R, Contour JP (2002) Characterization methods of epitaxial Sr2FeMoO6 thin films. J Cryst Growth 241:448–454CrossRefGoogle Scholar
  14. 14.
    Santiso J, Figueras A, Fraxedas J (2002) Thin films of Sr2FeMoO6 grown by pulsed laser deposition: preparation and characterization. Surf Interface Anal 33:676–680CrossRefGoogle Scholar
  15. 15.
    Kim DY, Kim JS, Park BH, Lee JK, Kim JH, Lee JH, Chang J, Kim HJ, Kim I, Park YD (2004) SrFeO3 nanoparticles-dispersed SrMoO4 insulating thin films deposited from Sr2FeMoO6 target in oxygen atmosphere. Appl Phys Lett 84:5037–5039CrossRefGoogle Scholar
  16. 16.
    Sanchez D, Garcia-Hernandez M, Auth N, Jakob G (2004) Structural, magnetic, and transport properties of high-quality epitaxial Sr2FeMoO6 thin films prepared by pulsed laser deposition. J Appl Phys 96:2736–2742CrossRefGoogle Scholar
  17. 17.
    Ogale AS, Ogale SB, Ramesh R, Venkatesan T (1999) Octahedral cation site disorder effects on magnetization in double-perovskite Sr2FeMoO6: Monte Carlo simulation study. Appl Phys Lett 75:537–539CrossRefGoogle Scholar
  18. 18.
    Borges RP, Lhostis S, Bari MA, Versluijs JJ, Lunney JG, Coey JMD, Besse M, Contour JP (2003) Thin films of the double perovskite Sr2FeMoO6 deposited by pulsed laser deposition. Thin Solid Films 429:5–12CrossRefGoogle Scholar
  19. 19.
    Meneghini C, Ray S, Liscio F, Bardelli F, Mobilio S, Sarma DD (2009) Nature of “disorder” in the ordered double perovskite Sr2FeMoO6. Phys Rev Lett 103:046403CrossRefGoogle Scholar
  20. 20.
    Cernea M, Vasiliu F, Plapcianu C, Bartha C, Mercioniu I, Pasuk I, Lowndes R, Trusca R, Aldica GV, Pintilie L (2013) Preparation by sol-gel and solid state reaction methods and properties investigation of double perovskite Sr2FeMoO6. J Eur Ceram Soc 33:2483–2490CrossRefGoogle Scholar
  21. 21.
    Koster G, Kropman BL, Rijnders G, Blank D, Rogalla H (1998) Quasi-ideal strontium titanate crystal surfaces through formation of strontium hydroxide. Appl Phys Lett 73:2920–2922CrossRefGoogle Scholar
  22. 22.
    Tang X, Zhu X, Dai J, Yang J, Hu L, Chen L, Zhu X, Li X, Jiang H, Zhang R, Sun Y (2014) c-Axis oriented SrMoO4 thin films by chemical solution deposition: self-assembled orientation, grain growth and photoluminescence properties. Acta Mater 65:287–294CrossRefGoogle Scholar
  23. 23.
    Gurmen E, Daniels E, King JS (1971) Crystal structure refinement of SrMoO4, SrWO4, CaMoO4, and BaWO4 by neutron diffraction. J Chem Phys 55:1093–1097CrossRefGoogle Scholar
  24. 24.
    Di Trolio A, Larciprete R, Testa AM, Fiorani D, Imperatori P, Turchini S, Zema N (2006) Double perovskite Sr2FeMoO6 films: growth, structure and magnetic behavior. J Appl Phys 100:013907CrossRefGoogle Scholar
  25. 25.
    Huang YH, Karppinen M, Yamauchi H, Goodenough JB (2006) Systematic studies on effects of cationic ordering on structural and magnetic properties in Sr2FeMoO6. Phys Rev B 73:104408CrossRefGoogle Scholar
  26. 26.
    Hong X, Yau JB, Hoffman JD, Ahn CH, Bason Y, Klein L (2006) Effect of electric field doping on the anisotropic magnetoresistance in doped manganites. Phys Rev B 74:174406CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Hakan Deniz
    • 1
  • Daniele Preziosi
    • 1
  • Marin Alexe
    • 2
  • Dietrich Hesse
    • 1
  • Christian Eisenschmidt
    • 3
  • Georg Schmidt
    • 3
  • Lucian Pintilie
    • 4
  1. 1.Max Planck Institute of Microstructure PhysicsHalleGermany
  2. 2.University of WarwickCoventryUK
  3. 3.Institute of PhysicsMartin Luther University Halle-WittenbergHalleGermany
  4. 4.National Institute of Materials PhysicsMagureleRomania

Personalised recommendations