Skip to main content
Log in

Liquid phase combustion of iron in an oxygen atmosphere

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this article, we report an investigation of laser-initiated ignition of pure iron rods, using optical pyrometry, video observations, and analysis of metallographic cross section of quenched burning liquid on copper plates. When ignition occurs, caused by the melting of metal, the combustion takes place in the liquid. Two distinct superposed phases (L1 and L2) are identified in the liquid, according to the known phase diagram of the iron oxide system. Our observations show that the L1 and L2 phases can be either distinct and immiscible or mixing together. The temperature of the transition at which the mixing occurs is around 2350 K. Two mechanisms are proposed to explain the mixing occurring at high temperature: the spontaneous emulsification resulting from a strong decrease of the interfacial tension between L1 and L2 and the reduction of the miscibility gap between them at high temperature. Based on the experimental data of the evolution of the temperature and the video observation of the melt for different ignition conditions, we provide a complete description of the combustion process of iron induced by laser. Eventually, an extrapolation of the iron–oxygen phase diagram, to temperatures higher than 2000 K, is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chung Y, Cramb A (1998) Direct observation of spontaneous emulsification and associated interfacial phenomena at the slag-steel interface. Philos Trans R Soc Lond Ser A 356(1739):981–993

    Article  Google Scholar 

  2. Chung Y, Cramb A (2000) Dynamic and equilibrium interfacial phenomena in liquid steel-slag systems. Metall Mater Trans B 31(5):957–971

    Article  Google Scholar 

  3. Distin P, Whiteway S, Masson C (1971) Solubility of oxygen in liquid iron from 1785 degrees to 1960 degrees C—a new technique for study of slag-metal equilibria. Can Metall Q 10(1):13–18

    Article  Google Scholar 

  4. Dreizin E (2000) Phase changes in metal combustion. Prog Energy Combust Sci 26(1):57–78

    Article  Google Scholar 

  5. Dreizin E, Suslov A, Trunov M (1993) General trends in metal particles heterogeneous combustion. Combust Sci Technol 90(1–4):79–99

    Article  Google Scholar 

  6. Fischer W, Schumacher J (1978) Die sttigungslslichkeit von reineisen an sauerstoff vom schmelzpunkt bis 2046c ermittelt mit dem schwebeschmelzverfahren. Arch Eisenhttenwes 49:431–435

    Google Scholar 

  7. Gaye H, Lucas L, Olette M, Riboud P (1984) Metal slag interfacial properties - equilibrium values and dynamic phenomena. Can Metall Q 23(2):179–191 76

    Article  Google Scholar 

  8. Glassman I (1993) The combustion phase of burning metals—comment. Combust Flame 93(3):338–342

    Article  Google Scholar 

  9. Harrison P, Yoffe A (1961) The burning of metals. Proc R Soc A 26lA:357–370

    Article  Google Scholar 

  10. Hirano T, Sato K, Sato Y, Sato J (1983) Prediction of metal fire spread in high pressure oxygen. Combust Sci Technol 32:137–159

    Article  Google Scholar 

  11. Hirano T, Sato Y, Sato K, Sato J (1984) The rate determining process of iron oxidation at combustion in high-pressure oxygen. Oxid Commun 6(1–4):113–124

    Google Scholar 

  12. Hirano T, Sato K, Sato J (1985) An analysis of upward fire spread along metal cylinders. J Heat Transf 107:708–710

    Article  Google Scholar 

  13. Jung E, Kim W, Sohn I, Min D (2010) A study on the interfacial tension between solid iron and CaO–SiO2–Mo system. J Mater Sci 45(8):2023–2029

    Article  Google Scholar 

  14. Krishnan S, Yugawa K, Nordine P (1997) Optical properties of liquid nickel and iron. Phys Rev B 55(13):8201–8206

    Article  Google Scholar 

  15. Kubaschewski O, Hopkins B (1962) Oxidation of metals and alloys. Butterworths, London

    Google Scholar 

  16. Kurtz J, Vulcan T, Steinberg T (1996) Emission spectra of burning iron in high-pressure oxygen. Combust Flame 104(4):391–400

    Article  Google Scholar 

  17. Mills KC, Hondros ED, Li ZS (2005) Interfacial phenomena in high temperature processes. J Mater Sci 40(9–10):2403–2409. doi:10.1007/s10853-005-1966-z

    Article  Google Scholar 

  18. Muller M (2013) ’Etude du processus d’initiation par laser de la combustion d’un alliage métallique sous atmosphère d’oxygène. PhD thesis, ENSMA

  19. Muller M, El-Rabii H, Fabbro R (2014) Laser ignition of bulk iron, mild steel and stainless steel in oxygen atmospheres. Combust Sci Technol 186(7):953–974

    Article  Google Scholar 

  20. Muller M, Fabbro R, El-Rabii H, Hirano K (2012) Temperature measurement of laser heated metals in highly oxidizing environment using 2D single-band and spectral pyrometry. J Laser Appl 24(2):022006

    Article  Google Scholar 

  21. Ogino K, Hara S, Miwa T, Kimoto S (1984) The effect of oxygen-content in molten iron on the interfacial-tension between molten iron and slag. Trans Iron Steel Inst Jpn 24(7):522–531

    Article  Google Scholar 

  22. Ohtani E, Ringwood A (1984) Composition of the core.2. effect of high-pressure on solubility of feo in molten iron. Earth Planet Sci Lett 71(1):94–103

    Article  Google Scholar 

  23. Ohtani H (1990) Theoretical consideration on the ignition of hot iron in high pressure oxygen. Fire Sci Technol (Noda Jpn) 10(1–2):1–9

    Article  Google Scholar 

  24. Philibert J, Vignes A, Bréchet Y, Combrade P (2002) Métallurgie—du minerai au matériau. Dunod, Paris

    Google Scholar 

  25. Riboud P, Lucas L (1981) Influence of mass transfer upon surface phenomena in iron and steelmaking. Can Metall Q 20(2):199–208

    Article  Google Scholar 

  26. Sato J, Hirano T (1986) Behavior of fire spreading along high-temperature mild steel and aluminum cylinders in oxygen. Am Soc Test Mater 910:118–134

    Google Scholar 

  27. Sato J, Ohtani H, Hirano T (1995) Ignition process of a heated iron block in high-pressure oxygen atmosphere. Combust Flame 100(3):376–383

    Article  Google Scholar 

  28. Sato K, Sato Y, Tsuno T, Tsuno T, Nakamura Y, Hirano T (1982) Metal combustion in high pressure oxygen atmosphere: detailed observation of burning region behaviour by using high-speed photography. In 15th International Congress on High Speed Photography and Photonics, vol 384. p 828–832

  29. Steinberg T, Benz F (1991) Iron combustion in microgravity. Am Soc Test Mater 1111:298–312

    Google Scholar 

  30. Steinberg T, Kurtz J, Wilson D (1998) The solubility of oxygen in liquid iron oxide during the combustion of iron rods in high-pressure oxygen. Combust Flame 113(1–2):27–37

    Article  Google Scholar 

  31. Steinberg T, Mulholland G, Wilson D (1992) The combustion of iron in high-pressure oxygen. Combust Flame 89(2):221–228

    Article  Google Scholar 

  32. Steinberg T, Wilson D, Benz F (1992) The combustion phase of burning metals. Combust Flame 91(2):200–208

    Article  Google Scholar 

  33. Steinberg T, Wilson D, Benz F (1993) The combustion phase of burning metals—response. Combust Flame 93(3):343–347

    Article  Google Scholar 

  34. Sun H (2006) Reaction rates and swelling phenomenon of Fe–C droplets in FeO bearing slag. ISIJ Int 46(11):1560–1569

    Article  Google Scholar 

  35. Wilson D, Steinberg T, Stolzfus J (1997) Thermodynamics and kinetics of burning iron. Am Soc Test Mater 1319:240–257

    Google Scholar 

Download references

Acknowledgements

This work pertains to the French Government program “Investissements d’Avenir” (LABEX INTERACTIFS, reference ANR-11-LABX-0017-01) and was financially supported by Air Liquide. The authors wish to thank Grigori Ermolaev (Khristianovich Institute of Theoretical and Applied Mechanics) for discussions of various issues considered in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryse Muller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muller, M., El-Rabii, H. & Fabbro, R. Liquid phase combustion of iron in an oxygen atmosphere. J Mater Sci 50, 3337–3350 (2015). https://doi.org/10.1007/s10853-015-8872-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8872-9

Keywords

Navigation