Skip to main content
Log in

Fabrication and characterization of 1 D Fe3O4/P(NIPAM–MAA–MBA) nanochains with thermo- and pH-responsive shell for controlled release for phenolphthalein

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

One-dimensional (1D) Fe3O4/poly(N-isopropylacrylamide-methacrylic acid-N,N′ -methylenebisacrylamide)(Fe3O4/P(NIPAM–MAA–MBA)) peapod-like nanochains have been successfully synthesized by magnetic field-induced precipitation polymerization. Fe3O4 microspheres modified with vinyl groups can be arranged with the direction of the external magnetic field in a line and linked permanently via P(NIPAM–MAA–MBA) coating during precipitation polymerization. The properties of 1D Fe3O4/P(NIPAM–MAA–MBA) were characterized by transmission electron microscopy, X-ray diffraction, thermogravimetric analysis (TGA), vibrating sample magnetometry, X-ray photoelectron spectroscopy, and UV–Vis spectrophotometer. Magnetic measurement revealed that these 1D peapod-like nanochains showed highly magnetic sensitivity. The thermal- and pH- response of 1D magnetic Fe3O4/P(NIPAM–MAA–MBA) nanochains was investigated by the temperature/pH dependence of hydrodynamic radius of Fe3O4/P(NIPAM–MAA–MBA) microspheres. The release behavior of phenolphthalein from 1D magnetic Fe3O4/P(NIPAM–MAA–MBA) nanochains could be effectively controlled by changing the temperature/pH values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kim Y, Kim D, Jang G, Kim J, Lee TS (2015) Fluorescent, stimuli-responsive, crosslinked PNIPAM-based microgel. Sens Actuators B 207:623–630

    Article  Google Scholar 

  2. Hoffman Allan S (2013) Stimuli-responsive polymers: Biomedical applications and challenges for clinical translation. Adv Drug Deliv Rev 65:10–16

    Article  Google Scholar 

  3. Zhuang J, Gordon MR, Ventura J, Li L, Thayumanavan S (2013) Multi-stimuli responsive macromolecules and their assemblies. Chem Soc Rev 42:7421–7435

    Article  Google Scholar 

  4. Hu L, Zhang R, Chen Q (2014) Synthesis and assembly of nanomaterials under magnetic fields. Nanoscale 6:14064–14105

    Article  Google Scholar 

  5. Yang C, Guo W, Cui L, An N, Zhang T, Lin H, Qu F (2014) pH-Responsive magnetic core-Shell nanocomposites for drug delivery. Langmuir 30:9819–9827

    Article  Google Scholar 

  6. Xu S, Lu H, Zheng X, Chen L (2013) Stimuli-responsive molecularly imprinted polymers: versatile functional materials. J Mater Chem C 1:4406–4422

    Article  Google Scholar 

  7. Liu C, Guo J, Yang W, Hu J, Wang C, Fu S (2009) Magnetic mesoporous silica microspheres with thermo-sensitive polymer shell for controlled drug release. J Mater Chem 19:4764–4770

    Article  Google Scholar 

  8. Wang H, Luo W, Chen J (2012) Fabrication and characterization of thermoresponsive Fe3O4@PNIPAM hybrid nanomaterials by surface-initiated RAFT polymerization. J Mater Sci 47:5918–5925

    Article  Google Scholar 

  9. Barner L, Quick AS, Vogt AP, Winkler V, Junkers T, Barner-Kowollik C (2012) Thermally responsive core-shell microparticles and cross-linked networks based on nitrone chemistry. Polym Chem 3:2266–2276

    Article  Google Scholar 

  10. Ramos J, Hidalgo-Alvarez R, Forcada J (2013) Facile synthesis of thermoresponsive nanohybrids. Soft Matter 9:8415–8419

    Article  Google Scholar 

  11. He X, Yu S, Dong Y, Yan F, Chen L (2009) Preparation and properties of a novel thermo-responsive poly (N-isopropylacrylamide) hydrogel containing glycyrrhetinic acid. J Mater Sci 44:4078–4086

    Article  Google Scholar 

  12. Chang B, Sha X, Guo J, Jiao Y, Wang C, Yang W (2011) Thermo and pH dual responsive, polymer shell coated, magnetic mesoporous silica nanoparticles for controlled drug release. J Mater Chem 21:9239–9247

    Article  Google Scholar 

  13. Luo B, Song X, Zhang F, Xia A, Yang W, Hu J, Wang C (2009) Multi-Functional Thermosensitive Composite Microspheres with High Magnetic Susceptibility Based on Magnetite Colloidal Nanoparticle Clusters. Langmuir 26:1674–1679

    Article  Google Scholar 

  14. Zhang B, Zhang H, Fan X, Li X, Yin D, Zhang Q (2013) Preparation of thermoresponsive Fe3O4/P(acrylic acid-methyl methacrylate-N-isopropylacrylamide) magnetic composite microspheres with controlled shell thickness and its releasing property for phenolphthalein. J Colloid Interface Sci 398:51–58

    Article  Google Scholar 

  15. Thakur D, Deng S, Baldet T, Winter JO (2009) pH sensitive CdS-iron oxide fluorescent-magnetic nanocomposites. Nanotechnology 20:485601

    Article  Google Scholar 

  16. Zhu CH, Lu Y, Chen JF, Yu SH (2014) Photothermal Poly(N-isopropylacrylamide)/Fe3O4 Nanocomposite Hydrogel as a Movable Position Heating Source under Remote Control. Small 10:2796–2800

    Article  Google Scholar 

  17. Tran VT, Zhou H, Kim S, Lee J, Kim J, Zou F, Kim J, Park JY, Lee J (2014) Self-assembled magnetoplasmonic nanochain for DNA sensing. Sens Actuators B 203:817–823

    Article  Google Scholar 

  18. Yuan J, Xu Y, Muller AHE (2011) One-dimensional magnetic inorganic-organic hybrid nanomaterials. Chem Soc Rev 40:640–655

    Article  Google Scholar 

  19. Corr SA, Byrne SJ, Tekoriute R, Meledandri CJ, Brougham DF, Lynch M, Kerskens C, O’Dwyer L, Gun’ko YK (2008) Linear assemblies of magnetic nanoparticles as MRI contrast agents. J Am Chem Soc 130:4214–4215

    Article  Google Scholar 

  20. Park JH, von Maltzahn G, Zhang L, Schwartz MP, Ruoslahti E, Bhatia SN, Sailor MJ (2008) Magnetic iron oxide nanoworms for tumor targeting and imaging. Adv Mater 20:1630–1635

    Article  Google Scholar 

  21. Park JH, von Maltzahn G, Zhang L, Derfus AM, Simberg D, Harris TJ, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Systematic surface engineering of magnetic nanoworms for in vivo tumor targeting. Small 5:694–700

    Article  Google Scholar 

  22. Ma M, Zhang Q, Dou J, Zhang H, Yin D, Geng W, Zhou Y (2012) Fabrication of one-dimensional Fe3O4/P(GMA-DVB) nanochains by magnetic-field-induced precipitation polymerization. J Colloid Interface Sci 374:339–344

    Article  Google Scholar 

  23. Ma M, Zhang Q, Dou J, Zhang H, Geng W, Yin D, Chen S (2012) Fabrication of 1D Fe3O4/P(NIPAM-MBA) thermosensitive nanochains by magnetic-field-induced precipitation polymerization. Colloid Polym Sci 290:1207–1213

    Article  Google Scholar 

  24. Deng H, Li X, Peng Q, Wang X, Chen J, Li Y (2005) Monodisperse magnetic single-crystal ferrite microspheres. Angew Chem Int Ed 44:2782–2785

    Article  Google Scholar 

  25. Xu S, Ma WF, You LJ, Li JM, Guo J, Hu JJ, Wang CC (2012) Toward designer magnetite/polystyrene colloidal composite microspheres with controllable nanostructures and desirable surface functionalities. Langmuir 28:3271–3278

    Article  Google Scholar 

  26. Li G, Yang X, Wang B, Wang J, Yang X (2008) Monodisperse temperature-responsive hollow polymer microspheres: synthesis, characterization and biological application. Polymer 49:3436–3443

    Article  Google Scholar 

  27. Li X, Zhang B, Li W, Lei X, Fan X, Tian L, Zhang H, Zhang Q (2014) Preparation and characterization of bovine serum albumin surface-imprinted thermosensitive magnetic polymer microsphere and its application for protein recognition. Biosens Bioelectron 51:261–267

    Article  Google Scholar 

  28. Wei W, Hu X, Qi X, Yu H, Liu Y, Li J, Zhang J, Dong W (2015) A novel thermo-responsive Hydrogel based on salecan and Poly(N-isopropylacrylamide): Synthesis and Characterization. Colloids Surf, B 125:1–11

    Article  Google Scholar 

  29. Su Y, Li Q, Li S, Dan M, Huo F, Zhang W (2014) Doubly thermo-responsive brush-linear diblock copolymers and formation of core-shell-corona micelles. Polymer 55:1955–1963

    Article  Google Scholar 

  30. Yuan Z, Wang Y, Chen D (2014) Preparation and characterization of thermo-, pH-, and magnetic-field-responsive organic/inorganic hybrid microgels based on poly(ethylene glycol). J Mater Sci 49:3287–3296

    Article  Google Scholar 

  31. Floris P, ávan Hest JC (2014) pH responsive polymersome Pickering emulsion for simple and efficient Janus polymersome fabrication. Chem Commun 50:14550–14553

    Article  Google Scholar 

  32. Nowag S, Haag R (2014) pH-Responsive Micro- and Nanocarrier Systems. Angew Chem Int Ed 53:49–51

    Article  Google Scholar 

  33. Gao Y, Ahiabu A, Serpe MJ (2014) Controlled Drug Release from the Aggregation-Disaggregation Behavior of pH-Responsive Microgels. ACS Appl Mater Interfaces 6:13749–13756

    Article  Google Scholar 

  34. Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655–1670

    Article  Google Scholar 

  35. Hu X, Hao X, Wu Y, Zhang J, Zhang X, Wang PC, Zou G, Liang XJ (2013) Multifunctional hybrid silica nanoparticles for controlled doxorubicin loading and release with thermal and pH dual response. J Mater Chem B 1:1109–1118

    Article  Google Scholar 

Download references

Acknowledgements

We greatly appreciate the support of the National Natural Science Foundation of China (51173146), National High Technology Research and Development Program (2012AA02A404), the key programs of international technology cooperation of Shaanxi province (2011KW-12) and Doctorate Foundation of Northwestern Polytechnical University (CX 201238).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingliang Ma or Qiuyu Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, M., Ma, Y., Zhang, B. et al. Fabrication and characterization of 1 D Fe3O4/P(NIPAM–MAA–MBA) nanochains with thermo- and pH-responsive shell for controlled release for phenolphthalein. J Mater Sci 50, 3083–3090 (2015). https://doi.org/10.1007/s10853-015-8868-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8868-5

Keywords

Navigation