Skip to main content
Log in

Mn-doped Li3V2(PO4)3 nanocrystal with enhanced electrochemical properties based on aerosol synthesis method

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Mn-doped Li3V2−x Mn x (PO4)3 nanocrystals with enhanced electrochemical properties for lithium-ion batteries were synthesized by aerosol process successfully. The nanocrystals synthesized from aerosol-assisted spray process have an average particle size smaller than 500 nm, with some initial particle size of about 100 nm. The Mn-doped Li3V2(PO4)3 cathode materials show higher capacity and coulombic efficiency than pure Li3V2(PO4)3 materials. Especially, the Mn-doped Li3V1.94Mn0.06(PO4)3 shows a capacity of 130 mAh/g in the voltage range of 3.0–4.4 V and a coulombic efficiency of 99.5 % at 1C. The results from XRD, SEM, HRTEM, and EIS suggested that lattice changes of Li3V2(PO4)3 due to Mn doping and the fine particles enabled by aerosol-assisted spray process can significantly reduce the charge-transfer resistance and improve the apparent Li+ diffusion coefficient of insertion/desertion in the electrodes, which were the critical reason of better electrochemical performance of Mn-doped Li3V2(PO4)3 cathode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rui X, Yan Q, Skyllas-Kazacos M, Mariana T (2014) Li3V2(PO4)3 cathode materials for lithium-ion batteries: a review. J Power Source 258:19–38

    Article  Google Scholar 

  2. Xiang H, Wang H, Chen C, Ge X, Guo S, Sun J, Hu W (2009) Li3V2(PO4)3 cathode materials for lithium-ion batteries: a review. J Power Sources 191:575–581

    Article  Google Scholar 

  3. Jin B, Gu H, Kim K (2008) Effect of different conductive additives on charge/discharge properties of LiCoPO4/Li batteries. J Solid State Electrochem 12:105–111

    Article  Google Scholar 

  4. Chang Y, Peng C, Hung I (2014) Effect of particle size and carbon coating on electrochemical properties of LiFePO4/C prepared by hydrothermal method. J Mater Sci 49:6907–6916. doi:10.1007/s10853-014-8395-9

    Article  Google Scholar 

  5. Hong Y, Tang Z, Hong Z, Zhang Z (2014) LiMn1−x Fe x PO4 (x = 0, 0.1, 0.2) nanorods synthesized by a facile solvothermal approach as high performance cathode materials for lithium-ion batteries. J Power Sources 248:655–659

    Article  Google Scholar 

  6. Fedorkova A, Orinakova R, Orinak A, Wiemhofer H, Kaniansky D (2010) Surface treatment of LiFePO4 cathode material with PPy/PEG conductive layer. J Solid State Electrochem 14:2173–2178

    Article  Google Scholar 

  7. Sun Y, Oh S, Park H, Scrosati B (2011) Micrometer-Sized, Nanoporous, High-Volumetric-Capacity LiMn0.85Fe0.15PO4 Cathode Material for Rechargeable Lithium-Ion Batteries. Micrometer-sized Adv Mater 23:5050–5054

    Article  Google Scholar 

  8. Damen L, Hassoun J, Mastragostino M, Scrosati B (2010) Solid-state, rechargeable Li/LiFePO4 polymer battery for electric vehicle application. J Power Source 195:6902–6904

    Article  Google Scholar 

  9. Sato M, Ohkawa H, Yoshida K, Saito M, Uematsu K, Toda K (2000) Enhancement of discharge capacity of Li3V2(PO4)3 by stabilizing the orthorhombic phase at room temperature. Solid State Ion 135:137–142

    Article  Google Scholar 

  10. Wang S, Zhang Z, Jiang Z, Deb A, Yang L, Hirano S (2014) Mesoporous Li3V2(PO4)3@CMK-3 nanocomposite cathode material for lithium ion batteries. J Power Sources 253:294–299

    Article  Google Scholar 

  11. Novoselov K, Geim A, Morozov S, Jiang D, Katsnelson M, Grigorieva I, Dubonos S, Firsov A (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200

    Article  Google Scholar 

  12. Cho A, Son J, Aravindan V, Kim H, Kang K, Yoon W, Kim W, Lee Y (2012) Carbon supported, Al doped-Li3V2(PO4)3 as a high rate cathode material for lithium-ion batteries. J Mater. Chen 22:6556–6560

    Article  Google Scholar 

  13. Kim J, Yoo J, Jung Y, Kang K (2013) Li3V2(PO4)3/conducting polymer as a high power 4 V-Class lithium battery electrode. Adv Energy Mater 3:1004–1007

    Article  Google Scholar 

  14. Teng F, Hu Z, Ma X, Zhang L, Ding C, Yu Y, Chen C (2013) Hydrothermal synthesis of plate-like carbon-coated Li3V2(PO4)3 and its low temperature performance for high power lithium ion batteries. Electrochim Acta 91:43–49

    Article  Google Scholar 

  15. Sun C, Rajasekhara S, Dong Y, Goodenough J (2011) Hydrothermal synthesis and electrochemical properties of Li3V2(PO4)3/C-based composites for lithium-ion batteries. Am Chem Soc 3:3772–3776

    Google Scholar 

  16. Deng C, Zhang S, Yang S, Gao Y, Wu B, Ma L, Fu B, Wu Q, Liu F (2011) Effects of Ti and Mg codoping on the electrochemical performance of Li3V2(PO4)3 cathode material for lithium ion batteries. J Phys Chem 115:15048–15056

    Article  Google Scholar 

  17. Mateyshina G, Uvarov N (2011) Electrochemical behavior of Li3−x M′ x V2−y M″ y (PO4)3 (M′ = K, M″ = Sc, Mg+, Ti)/C composite cathode material for lithium-ion batteries. J Power Sources 196:1494–1497

    Article  Google Scholar 

  18. Bini M, Ferrari S, Capsoni D, Massarotti V (2011) Mn influence on the electrochemical behavior of Li3V2(PO4)3 cathode material. Electrochim Acta 56:2648–2655

    Article  Google Scholar 

  19. Chen L, Yan B, Xie Y, Wang S, Jiang X, Yang G (2014) Preparation and electrochemical properties of Li3V1.8Mn0.2(PO4)3 doped via different Mn sources. J Power Sources 261:188–197

    Article  Google Scholar 

  20. Ren M, Zhou Z, Li Y, Gao X, Yan J (2006) Preparation and electrochemical studies of Fe-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries. J Power Sources 162:1357–1362

    Article  Google Scholar 

  21. Xia Y, Zhang W, Huang H, Gan Y, Li C, Tao X (2011) Synthesis and electrochemical properties of Nb-doped Li3V2(PO4)3/C cathode materials for lithium-ion batteries. Mater Sci Eng, B 176:633–639

    Article  Google Scholar 

  22. Zhang L, Zhang X, Sun Y, Luo W, Hu X, Wu X, Huanga Y (2011) Improved electrochemical performance in Li3V2(PO4)3 promoted by niobium-incorporation. J. Electrochemi. Soc 158:A924–A929

    Article  Google Scholar 

  23. Zhang L, Liang G, Peng G, Jiang Y, Fang H, Huang Y, Croft M, Ignatov A (2013) Evolution of electrochemical performance in Li3V2(PO4)3/C composites caused by cation incorporation. Electrochim Acta 108:182–190

    Article  Google Scholar 

  24. Chen L, Wang C, Wang H, Qiao E, Wang S, Jiang X, Yang G (2014) Enhanced high-rate electrochemical performance of Li3V1.8Mn0.2(PO4)3 by atomic doping of Mn(III). Electrochim Acta 125:338–346

    Article  Google Scholar 

  25. Son J, Kim G, Kim M, Kim S, Aravindan V, Lee Y, Lee Y (2013) Carbon coated Li3V2−x M x (PO4)3(M = Mn, Fe and Al) materials with enhanced cycleability for Li-ion batteries. J Electrochemi. Soc 160(1):A87–A92

    Article  Google Scholar 

  26. Liu H, Gao P, Fang J, Yang G (2011) Li3V2(PO4)3/graphene nanocomposites as cathode material for lithium ion batteries. Chem Commun 47:9110–9112

    Article  Google Scholar 

  27. Huang H, Yin S, Kerr T, Taylor N, Nazar L (2002) Nanostructured composites: A high capacity, Fast rate Li3V2(PO4)3/carbon cathode for rechargeable lithium batteries. Adv Mater 14:1525–1528

    Article  Google Scholar 

  28. Yang G, Ji H, Liu H, Qian B, Jiang X (2010) Crystal structure and electrochemical performance of Li3V2(PO4)3synthesized by optimized microwave solid-state synthesis route. Electrochim Acta 55:3669–3680

    Article  Google Scholar 

  29. Wang L, Zhou X, Guo Y (2010) Synthesis and performance of carbon-coated Li3V2(PO4)3cathode materials by a low temperature solid-state reaction. J Power Sources 195:2844–2850

    Article  Google Scholar 

  30. Qiao Y, Wang X, Mai Y, Xiang T, Zhang D, Gu C, Tu J (2011) Synthesis of plate-like Li3V2(PO4)3/C as a cathode material for Li-ion batteries. J Power Sources 196:8706–8709

    Article  Google Scholar 

  31. Rui X, Ding N, Liu J, Li C, Chen C (2010) Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material. Electrochim Acta 55:2384–2390

    Article  Google Scholar 

  32. Lim H, Cho A, Sivakumar N, Kim W, Yoon W, Lee Y (2011) Improved rate capability of Li/Li3V2(PO4)3 cell for advanced lithium secondary battery. Bull Korean Chem Soc 32:1491–1494

    Article  Google Scholar 

  33. Jiang T, Pan W, Wang J, Bie X, Du F, Wei Y, Wang C, Chen G (2010) Carbon coated Li3V2(PO4)3 cathode material prepared by a PVA assisted sol–gel method. Electrochim Acta 55:3864–3869

    Article  Google Scholar 

  34. Zhang L, Wang S, Cai D, Lian P, Zhu X, Yang W, Wang H (2013) Li3V2(PO4)3@C/graphene composite with improved cycling performance as cathode material for lithium-ion batteries. Electrochim Acta 91:108–113

    Article  Google Scholar 

  35. Hao H, Wang J, Liu J, Huang T, Yu A (2012) Synthesis, characterization and electrochemical performance of Li2FeSiO4/C cathode materials doped by vanadium at Fe/Si sites for lithium ion batteries. J Power Source 210:397–401

    Article  Google Scholar 

  36. Yan Z, Cai S, Miao L, Zhou X, Zhao Y (2012) Synthesis and characterization of in situ carbon-coated Li2FeSiO4 cathode materials for lithium ion battery. J Alloys Compd 511:101–106

    Article  Google Scholar 

  37. Liu S, Xu J, Li D, Hu Y, Liu X, Xie K (2013) High capacity Li2MnSiO4/C nanocomposite prepared by sol–gel method for lithium-ion batteries. J Power Source 232:258–263

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (51402187, 20825724, and 21237003), Science and Technology Commission of Shanghai Municipality (14DZ2261000), 085 Engineering Foundation from Shanghai University of Electric Power (Energy Storage for Smart Grid).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyan Lai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, C., Chen, Z., Zhou, H. et al. Mn-doped Li3V2(PO4)3 nanocrystal with enhanced electrochemical properties based on aerosol synthesis method. J Mater Sci 50, 3075–3082 (2015). https://doi.org/10.1007/s10853-015-8867-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8867-6

Keywords

Navigation