Skip to main content
Log in

An analytical bond-order potential for the copper–hydrogen binary system

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Despite extensive studies in the past, deterioration of mechanical properties due to hydrogen environment exposure remains a serious problem for structural materials. More effective improvement of a material’s resilience requires advanced computational methods to elucidate the fundamental mechanisms of the hydrogen effects. To enable accurate molecular dynamics (MD) studies of the hydrogen effects on metals, we have developed a high-fidelity analytical bond-order potential (BOP) for the copper–hydrogen binary system as a representative case. This potential is available through the publically available MD code LAMMPS. The potential parameters are optimized using an iterative process. First, the potential is fitted to static and reactive properties of a variety of elemental and binary configurations including small clusters and bulk lattices (with coordination varying from 1 to 12). Then the potential is put through a series of rigorous MD simulation tests (e.g., vapor deposition and solidification) that involve chaotic initial configurations. It is demonstrated that this Cu–H BOP not only gives structural and property trends close to those seen in experiments and quantum mechanical calculations, but also predicts the correct phase transformations and chemical reactions in direct MD simulations. The correct structural evolution from chaotic initial states strongly verifies the transferability of the potential. A highly transferable potential is the reason that a well-parameterized analytical BOP can enable MD simulations of metal-hydrogen interactions to reach a fidelity level not achieved in the past.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. San Marchi C, Somerday BP, Tang X, Schiroky GH (2008) Effects of alloy composition and strain hardening on tensile fracture of hydrogen-precharged type 316 stainless steels. Int J Hydrogen Energy 33:889–904

    Article  Google Scholar 

  2. Zhang L, Wen M, Imade M, Fukuyama S, Yokogawa K (2008) Effect of nickel equivalent on hydrogen gas embrittlement of austenitic stainless steels based on type 316 at low temperatures. Acta Mater 56:3414–3421

    Article  Google Scholar 

  3. Ulmer DG, Altstetter CJ (1991) Hydrogen-induced strain localization and failure of austenitic stainless-steels at high hydrogen concentrations. Acta Metall Mater 39:1237–1248

    Article  Google Scholar 

  4. Li YY, Fan CG, Rong LJ, Yan DS, Li XY (2010) Hydrogen embrittlement resistance of austenitic alloys and aluminum alloys. Acta Metall Sin 46:1335–1346

    Article  Google Scholar 

  5. Singh CV, Warner DH (2013) An atomistic-based hierarchical multiscale examination of age hardening in an Al–Cu alloy. Metall Mater Trans A 44:2625–2644

    Article  Google Scholar 

  6. Daw MS, Baskes MI (1984) Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B 29:6443–6453

    Article  Google Scholar 

  7. Shimomura Y, Guinan MW, Diaz de la Rubia T (1993) Atomistics of void formation in irradiated copper. J Nucl Mater 205:374–384

    Article  Google Scholar 

  8. Sun Q, Xie J, Zhang T (1995) Chemisorption of hydrogen on stepped (410) surfaces of Ni and Cu. Surf Sci 338:11–18

    Article  Google Scholar 

  9. Xie J, Jiang P, Zhang K (1996) Dynamics of H2 dissociation on Cu(100): effects of surface defects. J Chem Phys 104:9994–10000

    Article  Google Scholar 

  10. Lee BM, Lee BJ (2014) A comparative study on hydrogen diffusion in amorphous and crystalline metals using a molecular dynamics simulation. Metall Mater Trans A 45:2906–2915

    Article  Google Scholar 

  11. Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B, Sinnott SB (2002) A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J Phys Condens Matter 14:783–802

    Article  Google Scholar 

  12. van Duin CCT, Dasgupta S, Goddard WA (2001) ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A 105:9396–9409

    Article  Google Scholar 

  13. Tersoff J (1989) Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys Rev B 39:5566–5568

    Article  Google Scholar 

  14. Albe K, Nordlund K, Averback RS (2002) Modeling the metal-semiconductor interaction: analytical bond-order potential for platinum–carbon. Phys Rev B 65:195124

    Article  Google Scholar 

  15. Juslin N, Erhart P, Traskelin P, Nord J, Henriksson KOE, Nordlund K, Salonen E, Albe K (2005) Analytical interatomic potential for modeling nonequilibrium processes in the W–C–H system. J Appl Phys 98:123520

    Article  Google Scholar 

  16. Pettifor DG, Finnis MW, Nguyen-Manh D, Murdick DA, Zhou XW, Wadley HNG (2004) Analytic bond-order potentials for multicomponent systems. Mater Sci Eng A 365:2–13

    Article  Google Scholar 

  17. Pettifor DG, Oleinik II (2000) Bounded analytic bond-order potentials for σ and π bonds. Phys Rev Lett 84:4124–4127

    Article  Google Scholar 

  18. Pettifor DG, Oleinik II (2002) Analytic bond-order potential for open and close-packed phases. Phys Rev B 65:172103

    Article  Google Scholar 

  19. Drautz R, Murdick DA, Nguyen-Manh D, Zhou XW, Wadley HNG, Pettifor DG (2005) Analytic bond-order potential for predicting structural trends across the sp-valent elements. Phys Rev B 72:144105

    Article  Google Scholar 

  20. Pettifor DG, Oleinik II (1999) Analytic bond-order potentials beyond Tersoff–Brenner. I. Theory. Phys Rev B 59:8487–8499

    Article  Google Scholar 

  21. Murdick DA, Zhou XW, Wadley HNG, Nguyen-Manh D, Drautz R, Pettifor DG (2006) Analytic bond-order potential for the gallium arsenide system. Phys Rev B 73:045206

    Article  Google Scholar 

  22. Ward DK, Zhou XW, Wong BM, Doty FP, Zimmerman JA (2011) Accuracy of existing atomic potentials for the CdTe semiconductor compound. J Chem Phys 134:244703

    Article  Google Scholar 

  23. Zhou XW, Ward DK, Foster ME (submitted) An analytical bond-order potential for the aluminum copper binary system

  24. Ward DK, Zhou XW, Wong BM, Doty FP, Zimmerman JA (2012) Analytical bond-order potential for the cadmium telluride binary system. Phys Rev B 85:115206

    Article  Google Scholar 

  25. Ward DK, Zhou XW, Wong BM, Doty FP, Zimmerman JA (2012) Analytical bond-order potential for the Cd–Zn–Te ternary system. Phys Rev B 86:245203

    Article  Google Scholar 

  26. Ward DK, Zhou XW, Wong BM, Doty FP (2013) A refined parameterization of the analytical Cd–Zn–Te bond-order potential. J Mol Model 19:5469–5477

    Article  Google Scholar 

  27. Ward DK, Zhou XW, Foster ME, Zimmerman JA, Wong BM, Sills RB, Karnesky RA Jr, Kolasinski R, Thuermer K (to be published) SAND report, Sandia National Laboratories

  28. Donnay JDH, Ondik HM (1973) Crystal data, determinative tables, vol 2 (inorganic compounds), 3rd edn. U.S. Department of Commerce, National Bureau of Standards, and Joint Committee on Power Diffraction Standards, Washington, DC

    Google Scholar 

  29. Barin I (1993) Thermochemical data of pure substances. VCH, Weinheim

    Google Scholar 

  30. Wolfram S (2004) The mathematica book, 5th edn. Wolfram Research, Champaign

    Google Scholar 

  31. Hestenes MR, Stiefel E (1952) Methods of conjugate gradients for solving linear systems. J Res Natl Bur Stand 49:409–436

    Article  Google Scholar 

  32. Olsson DM, Nelson LS (1975) Nelder–Mead simplex procedure for function minimization. Technometrics 17:45–51

    Article  Google Scholar 

  33. Storn R, Price K (1997) Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359

    Article  Google Scholar 

  34. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680

    Article  Google Scholar 

  35. Plimpton S (1995) Fast parallel algorithms for short-range molecular-dynamics. J Comput Phys 117:1–19 (LAMMPS download site: lammps.sandia.gov)

    Article  Google Scholar 

  36. Cai J, Ye YY (1996) Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys. Phys Rev B 54:8398–8410

    Article  Google Scholar 

  37. Mendelev MI, Kramer MJ, Ott RT, Sordelet DJ, Yagodin D, Popel P (2009) Development of suitable interatomic potentials for simulation of liquid and amorphous Cu–Zr alloys. Philos Mag 89:967–987

    Article  Google Scholar 

  38. Zhou XW, Wadley HNG, Johnson RA, Larson DJ, Tabat N, Cerezo A, Petford-Long AK, Smith GDW, Clifton PH, Martens RL, Kelly TF (2001) Atomic scale structure of sputtered metal multilayers. Acta Mater 49:4005–4015

    Article  Google Scholar 

  39. Zhou XW, Johnson RA, Wadley HNG (2004) Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys Rev B 69:144113

    Article  Google Scholar 

  40. Mishin Y, Mehl MJ, Papaconstantopoulos DA, Voter AF, Kress JD (2001) Structural stability and lattice defects in copper: ab initio, tight-binding, and embedded-atom calculations. Phys Rev B 63:224106

    Article  Google Scholar 

  41. Foiles SM, Baskes MI, Daw MS (1986) Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B 33:7983–7991

    Article  Google Scholar 

  42. Adams JB, Foiles SM, Wolfer WG (1989) Self-diffusion and impurity diffusion of fcc metals using the 5-frequency model and the embedded atom method. J Mater Res 4:102–112

    Article  Google Scholar 

  43. Foiles SM (1985) Calculations of the surface segregation of Ni–Cu alloys with the use of the embedded-atom method. Phys Rev B 32:7685–7693

    Article  Google Scholar 

  44. Jelinek B, Groh S, Horstemeyer MF, Houze J, Kim SG, Wagner GJ, Moitra A, Baskes MI (2012) Modified embedded atom method potential for Al, Si, Mg, Cu, and Fe alloys. Phys Rev B 85:245102

    Article  Google Scholar 

  45. Simmons G, Wang H (1971) Single crystal elastic constants and calculated aggregate properties: a handbook. MIT Press, Cambridge

    Google Scholar 

  46. Massalski TB, Okamoto H, Subramanian PR, Kacprzak L (1990) Binary alloy phase diagrams II. ASM International, Materials Park

    Google Scholar 

  47. Carter CB, Ray ILF (1977) Stacking-fault energies of copper-alloys. Philos Mag 35:189–200

    Article  Google Scholar 

  48. Tyson WR, Miller WA (1977) Surface free-energies of solid metals: estimation from liquid surface-tension measurements. Surf Sci 62:267–276

    Article  Google Scholar 

  49. Smithels CI (1976) Metals reference book. Butterworths, London

    Google Scholar 

  50. McLellan RB, Harkins CG (1975) Hydrogen interactions with metals. Mater Sci Eng 18:5–35

    Article  Google Scholar 

  51. Zhou XW, Wadley HNG (1998) Atomistic simulations of the vapor deposition of Ni/Cu/Ni multilayers: the effects of adatom incident energy. J Appl Phys 84:2301–2315

    Article  Google Scholar 

  52. Stillinger FH, Weber TA (1985) Computer simulation of local order in condensed phases of silicon. Phys Rev B 31:5262–5271

    Article  Google Scholar 

  53. Zhou XW, Foster ME, van Swol FB, Martin JE, Wong BM (2014) Analytical bond-order potential for the Cd–Te–Se ternary system. J Phys Chem C 118:20661–20679

    Article  Google Scholar 

  54. Drautz R, Pettifor DG (2011) Valence-dependent analytic bond-order potential for magnetic transition metals. Phys Rev B 84:214114

    Article  Google Scholar 

  55. Drain JF, Drautz R, Pettifor DG (2014) Magnetic analytic bond-order potential for modeling the different phases of Mn at zero Kelvin. Phys Rev B 89:134102

    Article  Google Scholar 

  56. Goodwin L, Skinner AJ, Pettifor DG (1989) Generating transferable tight-binding parameters: application to silicon. Europhys Lett 9:701–706

    Article  Google Scholar 

Download references

Acknowledgements

Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. This work was performed under a Laboratory Directed Research and Development (LDRD) project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. W. Zhou.

Appendices

Appendix 1: Detailed mathematics of BOP

Equation (1) is expressed in terms of U ij (r ij ), V ij (r ij ), V 2,ij (r ij ), Θ ij and Θ 2,ij . U ij (r ij ), V ij (r ij ), and V 2,ij (r ij ) are expressed in a general form as

$$ U_{ij} \left( {r_{ij} } \right) = U_{0,ij} \cdot f_{ij} \left( {r_{ij} } \right)^{{m_{ij} }} \cdot f_{{{\text{c}},ij}} \left( {r_{ij} } \right), $$
(2)
$$ V_{ij} \left( {r_{ij} } \right) = V_{0,ij} \cdot f_{ij} \left( {r_{ij} } \right)^{{n_{ij} }} \cdot f_{{{\text{c}},ij}} \left( {r_{ij} } \right), $$
(3)
$$ V_{2,ij} \left( {r_{ij} } \right) = V_{2,0,ij} \cdot f_{ij} \left( {r_{ij} } \right)^{{n_{ij} }} \cdot f_{{{\text{c}},ij}} \left( {r_{ij} } \right), $$
(4)

where U 0,ij , V 0,ij , V 2,0,ij , m ij , and n ij are pairwise parameters, f ij (r ij ) is a pair function [56], and f c,ij (r ij ) is a cutoff function. f ij (r ij ) is written as

$$ f_{ij} \left( {r_{ij} } \right) = \frac{{r_{0,ij} }}{{r_{ij} }}\exp \left[ {\left( {\frac{{r_{0,ij} }}{{r_{{{\text{c}},ij}} }}} \right)^{{n_{{{\text{c}},ij}} }} - \left( {\frac{{r_{ij} }}{{r_{{{\text{c}},ij}} }}} \right)^{{n_{{{\text{c}},ij}} }} } \right] $$
(5)

with r 0,ij , r c,ij , and n c,ij being pairwise parameters. The cutoff function is expressed as follows:

$$ f_{{{\text{c}},ij}} \left( {r_{ij} } \right) = \left\{ {\begin{array}{*{20}l} {\frac{{\exp \left( { - \alpha_{ij} \cdot r_{ij}^{{\gamma_{ij} }} } \right) - \exp \left( { - \alpha_{ij} \cdot r_{{{\text{cut}},ij}}^{{\gamma_{ij} }} } \right)}}{{\exp \left( { - \alpha_{ij} \cdot r_{1,ij}^{{\gamma_{ij} }} } \right) - \exp \left( { - \alpha_{ij} \cdot r_{{{\text{cut}},ij}}^{{\gamma_{ij} }} } \right)}},} \hfill & {r_{ij} < r_{{{\text{cut}},ij}} } \hfill \\ {0,} \hfill & {r_{ij} \ge r_{{{\text{cut}},ij}} } \hfill \\ \end{array} } \right., $$
(6)

where r 1,ij , r cut,ij are independent pairwise parameters, and α ij and γ ij are dependent pairwise parameters that can be calculated as \( \gamma_{ij} = \frac{{\ln \left[ {\ln \left( {0.99} \right)/\ln \left( {0.01} \right)} \right]}}{{\ln \left( {r_{1,ij} /r_{{{\text{cut}},ij}} } \right)}} \) and \( \alpha_{ij} = - \frac{{\ln \left( {0.99} \right)}}{{\left( {r_{1,ij} } \right)^{{\gamma_{ij} }} }} \).

The local variable Θ ij is calculated as

$$ \varTheta_{ij} = \varTheta_{{{\text{f}},ij}} \left( {\varTheta_{ij}^{{\left( {1/2} \right)}} } \right) \cdot \left[ {1 - \left( {f_{ij} - \frac{1}{2}} \right) \cdot k_{ij} \cdot \frac{{V_{ij}^{2} \left( {r_{ij} } \right) \cdot R_{ij} }}{{V_{ij}^{2} \left( {r_{ij} } \right) + \frac{{V_{ij}^{2} \left( {r_{ij} } \right) \cdot \varPhi_{{}}^{i} + V_{ij}^{2} \left( {r_{ij} } \right) \cdot \varPhi^{j} }}{2} + \varsigma_{2} }}} \right], $$
(7)

where \( \varTheta_{ij}^{{\left( {1/2} \right)}} \), \( \varPhi^{i} \), \( \varPhi^{j} \), and \( R_{ij} \) are also local variables, as defined below, f ij is valence filling parameter (0 ≤ f ij  ≤ 1), k ij is another pairwise parameter, \( \varsigma_{2} \) (and \( \varsigma_{1} \), \( \varsigma_{3} \), \( \varsigma_{4} \) below) are small numbers designed to avoid singularities of the functions, and \( \varTheta_{{{\text{f}},ij}} \) is the valence shell filling function. \( \varTheta_{{{\text{f}},ij}} \) (as a function of \( \varTheta_{ij}^{{\left( {1/2} \right)}} \)) is defined as follows:

$$ \varTheta_{{{\text{f}},ij}} \left( {\varTheta_{ij}^{{\left( {1/2} \right)}} } \right) = \frac{{\varTheta_{0} + \varTheta_{1} + S \cdot \varTheta_{ij}^{{\left( {1/2} \right)}} - \sqrt {\left( {\varTheta_{0} + \varTheta_{1} + S \cdot \varTheta_{ij}^{{\left( {1/2} \right)}} } \right)^{2} - 4\left( { - \varepsilon \sqrt {1 + S^{2} } + \varTheta_{0} \cdot \varTheta_{1} + S \cdot \varTheta_{1} \cdot \varTheta_{ij}^{{\left( {1/2} \right)}} } \right)} }}{2}, $$
(8)

where

$$ \left\{ {\begin{array}{*{20}l} {\varepsilon = 10^{ - 10} } \hfill \\ {\varTheta_{0} = 15.737980 \cdot \left( {\frac{1}{2} - \left| {f_{ij} - \frac{1}{2}} \right|} \right)^{1.137622} \cdot \left| {f_{ij} - \frac{1}{2}} \right|^{2.087779} } \hfill \\ {S = 1.033201 \cdot \left\{ {1 - \exp \left[ { - 22.180680 \cdot \left( {\frac{1}{2} - \left| {f_{ij} - \frac{1}{2}} \right|} \right)^{2.689731} } \right]} \right\}} \hfill \\ {\varTheta_{1} = 2 \cdot \left( {\frac{1}{2} - \left| {f_{ij} - \frac{1}{2}} \right|} \right)} \hfill \\ \end{array} .} \right. $$
(9)

When Θ 2,ij is set to zero, the valence shell filling function \( \varTheta_{f,ij} \left( {\varTheta_{ij}^{{\left( {1/2} \right)}} } \right) \) allows the potential to be adjusted for different types of elements. To examine this, \( \varTheta_{{{\text{f}},ij}} \left( {\varTheta_{ij}^{{\left( {1/2} \right)}} } \right) \) is plotted as a function of \( \varTheta_{ij}^{{\left( {1/2} \right)}} \) at different valence shell filling parameters f ij in Fig. 11. It can be seen that when the filling parameter f ij  = 0.5, \( \varTheta_{{{\text{f}},ij}} \left( {\varTheta_{ij}^{{\left( {1/2} \right)}} } \right) \) reduces to \( \varTheta_{ij}^{{\left( {1/2} \right)}} \). This means that the potential is equivalent to the original model derived for half-full covalent systems. When f ij  = 0.0, \( \varTheta_{{{\text{f}},ij}} \left( {\varTheta_{ij}^{{\left( {1/2} \right)}} } \right) \) = 0. This means that Θ 1,ij  = 0 according to Eq. (7), which in turn means that the BOP reduces to a repulsive interaction suitable for inert elements. When f ij is near 0.1, \( \varTheta_{{{\text{f}},ij}} \left( {\varTheta_{ij}^{{\left( {1/2} \right)}} } \right) \) is near constant. This means that the BOP reduces to a pair potential that tends to predict the lowest energy for closely packed structures. For other f ij values, \( \varTheta_{{{\text{f}},ij}} \left( {\varTheta_{ij}^{{\left( {1/2} \right)}} } \right) \) accounts for local environment effects including the angular dependence, which is similar to ideas used within MEAM type potentials.

Fig. 11
figure 11

\( \varTheta_{f,ij} \left( {\varTheta_{ij}^{{\left( {1/2} \right)}} } \right) \) as a function of \( \varTheta_{ij}^{{\left( {1/2} \right)}} \) at a different valence shell filling parameter f ij

The local variable \( \varTheta_{ij}^{{\left( {1/2} \right)}} \) is calculated as

$$ \varTheta_{ij}^{{\left( {1/2} \right)}} = \frac{{V_{ij} \left( {r_{ij} } \right)}}{{\sqrt {V_{ij}^{2} \left( {r_{ij} } \right) + c_{ij} \cdot \left[ {V_{ij}^{2} \left( {r_{ij} } \right) \cdot \varPhi^{i} + V_{ij}^{2} \left( {r_{ij} } \right) \cdot \varPhi^{j} } \right] + \varsigma_{1} } }}, $$
(10)

where c ij is a pairwise parameter. The \( \varPhi^{i} \) and \( \varPhi^{j} \) terms used in Eqs. (7) and (10) have the same formulation except that they are evaluated at the center of atom i and atom j, respectively. In addition, Eqs. (7) and (10) only require \( V_{ij}^{2} \left( {r_{ij} } \right) \cdot \varPhi^{i} \) and \( V_{ij}^{2} \left( {r_{ij} } \right) \cdot \varPhi^{j} \). Correspondingly, only \( V_{ij}^{2} \left( {r_{ij} } \right) \cdot \varPhi^{i} \) is given as

$$ V_{ij}^{2} \left( {r_{ij} } \right) \cdot \varPhi^{i} = \sum\limits_{\begin{subarray}{l} k = i_{1} \\ k \ne j \end{subarray} }^{{i_{N} }} {g_{jik}^{2} \left( {\theta_{jik} } \right)} \cdot V_{ik}^{2} \left( {r_{ik} } \right), $$
(11)

where θ jik is the bond angle at atom i spanning atoms j and k, and the three-body angular function g jik (θ jik ) is written as

$$ g_{jik} \left( {\theta_{jik} } \right) = \sum\limits_{n = 0}^{7} {g_{n,jik} \cdot \left( {\cos \theta_{jik} } \right)^{n} } , $$
(12)

where g n,jik , (n = 0, 1, 2, …, 7) are 8 three-body-dependent parameters.

To perform calculations using Eq. (7), the product \( V_{ij}^{2} \left( {r_{ij} } \right) \cdot R_{ij} \) is required. This is expressed as

$$ V_{ij}^{2} \left( {r_{ij} } \right) \cdot R_{ij} = \sum\limits_{\begin{subarray}{l} k = i_{1} \\ k,j = n \end{subarray} }^{{i_{N} }} {g_{jik} \left( {\theta_{jik} } \right) \cdot g_{ijk} \left( {\theta_{ijk} } \right) \cdot g_{ikj} \left( {\theta_{ikj} } \right) \cdot } V_{ik} \left( {r_{ik} } \right) \cdot V_{jk} \left( {r_{jk} } \right), $$
(13)

where k, j = n in the summation indicates that k and j are neighbors.

The local variable \( \varTheta_{2,ij} \) is evaluated as

$$ \varTheta_{2,ij} = \frac{{a_{2,ij} \cdot V_{2,ij} \left( {r_{ij} } \right)}}{{\sqrt {V_{2,ij}^{2} \left( {r_{ij} } \right) + c_{2,ij} \cdot \left( {\frac{{V_{2,ij}^{2} \left( {r_{ij} } \right) \cdot \varPhi_{2,ij}^{i} + V_{2,ij}^{2} \left( {r_{ij} } \right) \cdot \varPhi_{2,ij}^{j} }}{2} + \sqrt {V_{2,ij}^{4} \left( {r_{ij} } \right) \cdot \varPhi_{4,ij} + \varsigma_{3} } } \right) + \varsigma_{4} } }} + \frac{{a_{2,ij} \cdot V_{2,ij} \left( {r_{ij} } \right)}}{{\sqrt {V_{2,ij}^{2} \left( {r_{ij} } \right) + c_{2,ij} \cdot \left( {\frac{{V_{2,ij}^{2} \left( {r_{ij} } \right) \cdot \varPhi_{2,ij}^{i} + V_{2,ij}^{2} \left( {r_{ij} } \right) \cdot \varPhi_{2,ij}^{j} }}{2} - \sqrt {V_{2,ij}^{4} \left( {r_{ij} } \right) \cdot \varPhi_{4,ij} + \varsigma_{3} } + \sqrt {\varsigma_{3} } } \right) + \varsigma_{4} } }}, $$
(14)

where \( c_{2,ij} \) and \( a_{2,ij} \) are pairwise parameters, and \( \varPhi_{2,ij}^{i} \), \( \varPhi_{2,ij}^{j} \), and \( \varPhi_{4,ij} \) are additional local variables. \( \varPhi_{2,ij}^{i} \) and \( \varPhi_{2,ij}^{j} \) have the same expression except that they are evaluated at different atoms. Equation (14) can be calculated if expressions of \( V_{2,ij}^{2} \left( {r_{ij} } \right) \cdot \varPhi_{2,ij}^{i} \) and \( V_{2,ij}^{4} \left( {r_{ij} } \right) \cdot \varPhi_{4,ij} \) are known. \( V_{2,ij}^{2} \left( {r_{ij} } \right) \cdot \varPhi_{2,ij}^{i} \) can be calculated as follows:

$$ V_{2,ij}^{2} \left( {r_{ij} } \right) \cdot \varPhi_{2,ij}^{i} = \sum\limits_{\begin{subarray}{l} k = i_{1} \\ k \ne j \end{subarray} }^{{i_{N} }} {\left[ {p_{i} \cdot V_{ik}^{2} \left( {r_{ik} } \right) \cdot \sin^{2} \theta_{jik} + \left( {1 + \cos^{2} \theta_{jik} } \right) \cdot V_{2,ik}^{2} \left( {r_{ik} } \right)} \right]} , $$
(15)

where \( p_{i} \) is a species-dependent parameter. \( V_{2,ij}^{4} \left( {r_{ij} } \right) \cdot \varPhi_{4,ij} \) is expressed as

$$ \begin{aligned} V_{2,ij}^{4} \left( {r_{ij} } \right) \cdot \varPhi_{4,ij} & = \frac{1}{4}\sum\limits_{\begin{subarray}{l} k = i_{1} \\ k \ne j \end{subarray} }^{{i_{N} }} {\sin^{4} \theta_{jik} \cdot \hat{V}_{ik}^{4} \left( {r_{ik} } \right)} + \frac{1}{4}\sum\limits_{\begin{subarray}{l} k = j_{1} \\ k \ne i \end{subarray} }^{{j_{N} }} {\sin^{4} \theta_{ijk} \cdot \hat{V}_{jk}^{4} \left( {r_{jk} } \right)} \\ & \quad + \frac{1}{2}\sum\limits_{\begin{subarray}{l} k = i_{1} \\ k \ne j \end{subarray} }^{{i_{N} }} {\sum\limits_{\begin{subarray}{l} k' = k + 1 \\ k' \ne j \end{subarray} }^{{i_{N} }} {\sin^{2} \theta_{jik} \cdot \sin^{2} \theta_{jik'} \cdot \hat{V}_{ik}^{2} \left( {r_{ik} } \right) \cdot \hat{V}_{ik'}^{2} \left( {r_{ik'} } \right) \cdot \cos \left( {\Delta \psi_{kk'} } \right)} } \\ & \quad + \frac{1}{2}\sum\limits_{\begin{subarray}{l} k = j_{1} \\ k \ne i \end{subarray} }^{{j_{N} }} {\sum\limits_{\begin{subarray}{l} k' = k + 1 \\ k' \ne i \end{subarray} }^{{j_{N} }} {\sin^{2} \theta_{ijk} \cdot \sin^{2} \theta_{ijk'} \cdot \hat{V}_{jk}^{2} \left( {r_{jk} } \right) \cdot \hat{V}_{jk'}^{2} \left( {r_{jk'} } \right) \cdot \cos \left( {\Delta \psi_{kk'} } \right)} } \\ & \quad + \frac{1}{2}\sum\limits_{\begin{subarray}{l} k' = i_{1} \\ k' \ne j \end{subarray} }^{{i_{N} }} {\sum\limits_{\begin{subarray}{l} k = j_{1} \\ k \ne i \end{subarray} }^{{j_{N} }} {\sin^{2} \theta_{jik'} \cdot \sin^{2} \theta_{ijk} \cdot \hat{V}_{ik'}^{2} \left( {r_{ik'} } \right) \cdot \hat{V}_{jk}^{2} \left( {r_{jk} } \right) \cdot \cos \left( {\Delta \psi_{kk'} } \right)} } , \\ \end{aligned} $$
(16)

where

$$ \hat{V}_{ik}^{2} \left( {r_{ik} } \right) = p_{i} \cdot V_{ik}^{2} \left( {r_{ik} } \right) - V_{2,ik}^{2} \left( {r_{ik} } \right) $$
(17)

and \( \Delta \psi_{kk'} \) defines a dihedral angle by the four atoms i, j, k, k′, which can be calculated as

$$ \cos \left( {\Delta \psi_{kk'} } \right) = \frac{{2\left( {\cos \theta_{kik'} - \cos \theta_{jik'} \cdot \cos \theta_{jik} } \right)^{2} }}{{\sin^{2} \theta_{jik} \cdot \sin^{2} \theta_{jik'} }} - 1,\quad {\text{or}}\quad \frac{{2\left( {\frac{{\overrightarrow {ik'} \cdot \overrightarrow {jk} }}{{\left| {\overrightarrow {ik'} } \right| \cdot \left| {\overrightarrow {jk} } \right|}} + \cos \theta_{ijk} \cdot \cos \theta_{jik'} } \right)^{2} }}{{\sin^{2} \theta_{ijk} \cdot \sin^{2} \theta_{jik'} }} - 1. $$
(18)

Equations (1)–(18) fully define the BOP.

Appendix 2: Parameter bounds

The parameters are bounded within physical ranges during parameterizations and these constraints are listed in Table 5 in three groups representing parameterizations of Cu, H, and Cu–H, respectively.

Table 5 Bounds on BOP parameters

Appendix 3: Numerical values of cohesive energies and atomic volumes of various Cu–H structures

See Table 6 in appendix.

Table 6 Cohesive energies E c (eV/atom) and atomic volumes Ω3/atom) of various Cu–H structures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X.W., Ward, D.K., Foster, M. et al. An analytical bond-order potential for the copper–hydrogen binary system. J Mater Sci 50, 2859–2875 (2015). https://doi.org/10.1007/s10853-015-8848-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8848-9

Keywords

Navigation