Skip to main content
Log in

Three-dimensional imaging of electrospun fiber mats using confocal laser scanning microscopy and digital image analysis

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Confocal laser scanning microscopy with fluorescent markers and index matching has been used to collect three-dimensional (3D) digitized images of electrospun fiber mats and of a borosilicate glass fiber material. By embedding the fluorescent dye in either the material component (fibers) or pore space component (the index-matching fluid), acquisitions of both positive and negative images of the porous fibrous materials are demonstrated. Image analysis techniques are then applied to the 3D reconstructions of the fibrous materials to extract important morphological characteristics such as porosity, specific surface area, distributions of fiber diameter and of pore diameter, and fiber orientation distribution; the results are compared with other experimental measurements where available. The topology of the pore space is quantified for an electrospun mat for the first time using the Euler-Poincaré characteristic. Finally, a method is presented for subdividing the pore space into a network of cavities and the gates that interconnect them, by which the network structure of the pore space in these electrospun mats is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Baldwin CA et al (1996) Determination and characterization of the structure of a pore space from 3D volume images. J Colloid Interface Sci 181(1):79–92

    Article  Google Scholar 

  2. Auzerais FM et al (1996) Transport in sandstone: a study based on three dimensional microtomography. Geophys Res Lett 23(7):705–708

    Article  Google Scholar 

  3. Jones JR et al (2007) Non-destructive quantitative 3D analysis for the optimisation of tissue scaffolds. Biomaterials 28(7):1404–1413

    Article  Google Scholar 

  4. Jaganathan S, Vahedi Tafreshi H, Pourdeyhimi B (2008) A realistic approach for modeling permeability of fibrous media: 3-D imaging coupled with CFD simulation. Chem Eng Sci 63(1):244–252

    Article  Google Scholar 

  5. Levitz P (2007) Toolbox for 3D imaging and modeling of porous media: relationship with transport properties. Cem Concr Res 37(3):351–359

    Article  Google Scholar 

  6. Turner ML et al (2004) Three-dimensional imaging of multiphase flow in porous media. Physica A 339(1–2):166–172

    Article  Google Scholar 

  7. Kozeny J (1927) Ueber kapillare Leitung des Wassers im Boden. Sitzungsber Akad Wiss Wien 136(2a):271–306

    Google Scholar 

  8. Carman P (1937) Fluid flow through granular beds. Trans Inst Chem Eng 15:150–166

    Google Scholar 

  9. Fatt I (1956) The network model of porous media 1. Capillary pressure characteristics. Trans Am Inst Min Metall Eng 207(7):144–159

    Google Scholar 

  10. Valvatne PH, Blunt MJ (2004) Predictive pore-scale modeling of two-phase flow in mixed wet media. Water Resour Res 40(7):W07406

    Article  Google Scholar 

  11. Chen S, Doolen GD (1998) Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech 30(1):329–364

    Article  Google Scholar 

  12. Cancedda R et al (2003) Tissue engineering and cell therapy of cartilage and bone. Matrix Biol 22(1):81–91

    Article  Google Scholar 

  13. Lowery JL, Datta N, Rutledge GC (2010) Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly(ɛ-caprolactone) fibrous mats. Biomaterials 31(3):491–504

    Article  Google Scholar 

  14. Luu YK et al (2003) Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA–PEG block copolymers. J Controlled Release 89(2):341–353

    Article  Google Scholar 

  15. Liu H et al (2004) Polymeric nanowire chemical sensor. Nano Lett 4(4):671–675

    Article  Google Scholar 

  16. Chen L et al (2010) Multifunctional electrospun fabrics via layer-by-layer electrostatic assembly for chemical and biological protection. Chem Mater 22(4):1429–1436

    Article  Google Scholar 

  17. Burger C, Hsiao BS, Chu B (2006) Nanofibrous materials and their applications. Annu Rev Mater Res 36(1):333–368

    Article  Google Scholar 

  18. Pai C-L, Boyce MC, Rutledge GC (2011) Mechanical properties of individual electrospun PA 6(3)T fibers and their variation with fiber diameter. Polymer 52(10):2295–2301

    Article  Google Scholar 

  19. Tomba E et al (2010) Artificial vision system for the automatic measurement of interfiber pore characteristics and fiber diameter distribution in nanofiber assemblies. Ind Eng Chem Res 49(6):2957–2968

    Article  Google Scholar 

  20. Rutledge GC, Lowery JL, Pai CL (2009) Characterization by mercury porosimetry of nonwoven fiber media with deformation. J Eng Fibers Fabr 4(3):1–13

    Google Scholar 

  21. Jena A, Gupta K (2005) Pore volume of nanofiber nonwovens. Int Nonwovens J 14(2):25–30

    Google Scholar 

  22. Sampson W, Urquhart S (2008) The contribution of out-of-plane pore dimensions to the pore size distribution of paper and stochastic fibrous materials. J Porous Mater 15(4):411–417

    Article  Google Scholar 

  23. Eichhorn SJ, Sampson WW (2010) Relationships between specific surface area and pore size in electrospun polymer fibre networks. J R Soc Interface 7:641–649

    Article  Google Scholar 

  24. Ho ST, Hutmacher DW (2006) A comparison of micro CT with other techniques used in the characterization of scaffolds. Biomaterials 27(8):1362–1376

    Article  Google Scholar 

  25. Stachewicz U et al (2012) Manufacture of void-free electrospun polymer nanofiber composites with optimized mechanical properties. ACS Appl Mater Interfaces 4(5):2577–2582

    Article  Google Scholar 

  26. Sarada T, Sawyer LC, Ostler MI (1983) Three dimensional structure of Celgard® microporous membranes. J Membr Sci 15(1):97–113

    Article  Google Scholar 

  27. Bagherzadeh R et al (2013) Three-dimensional pore structure analysis of nano/microfibrous scaffolds using confocal laser scanning microscopy. J Biomed Mater Res Part A 101A(3):765–774

    Article  Google Scholar 

  28. Thibault X, Bloch J-F (2002) Structural analysis by X-ray microtomography of a strained nonwoven papermaker felt. Text Res J 72(6):480–485

    Article  Google Scholar 

  29. Arns C et al (2002) Computation of linear elastic properties from microtomographic images: methodology and agreement between theory and experiment. Geophysics 67(5):1396–1405

    Article  Google Scholar 

  30. Cox G, Sheppard CJR (2004) Practical limits of resolution in confocal and non-linear microscopy. Microsc Res Tech 63(1):18–22

    Article  Google Scholar 

  31. Choong L et al (2013) Compressibility of electrospun fiber mats. J Mater Sci 48(22):7827–7836. doi:10.1007/s10853-013-7528-x

    Article  Google Scholar 

  32. Jähne B (2005) Digital image processing. 6th Rev. and Extended Ed. Springer, Berlin, New York, xiii, 607 p

  33. Toll S, Manson JAE (1995) Elastic compression of a fiber network. J Appl Mech 62(1):223–226

    Article  Google Scholar 

  34. Heller W (1965) Remarks on refractive index mixture rules. J Phys Chem 69(4):1123–1129

    Article  Google Scholar 

  35. Gooch JW (2011) Encyclopedic dictionary of polymers, 2nd edn. Springer, New York, NY

    Book  Google Scholar 

  36. http://www.filmetrics.com/refractive-index-database/BSG/Borosilicate-Glass-Microscope-Slide. Accessed 25 August, 2014

  37. Schindelin J et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Method 9(7):676–682

    Article  Google Scholar 

  38. du Roscoat SR, Bloch J-F, Thibault X (2005) Synchrotron radiation microtomography applied to investigation of paper. J Phys D Appl Phys 38(10A):A78

    Article  Google Scholar 

  39. Pfeifer P et al (1991) Structure analysis of porous solids from preadsorbed films. Langmuir 7(11):2833–2843

    Article  Google Scholar 

  40. Gelb LD, Gubbins KE (1999) Pore size distributions in porous glasses: a computer simulation study. Langmuir 15(2):305–308

    Article  Google Scholar 

  41. Serra JP (1982) Image analysis and mathematical morphology. Academic Press, London

    Google Scholar 

  42. Ohser J, Nagel W (1996) The estimation of the Euler-Poincare characteristic from observations on parallel sections. J Microsc 184(2):117–126

    Article  Google Scholar 

  43. Nagel Ohser, Pischang (2000) An integral-geometric approach for the Euler-Poincaré characteristic of spatial images. J Microsc 198(1):54–62

    Article  Google Scholar 

  44. Vogel HJ (1997) Morphological determination of pore connectivity as a function of pore size using serial sections. Eur J Soil Sci 48(3):365–377

    Article  Google Scholar 

  45. Kanit T et al (2003) Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Solids Struct 40(13–14):3647–3679

    Article  Google Scholar 

  46. Kanit T et al (2006) Apparent and effective physical properties of heterogeneous materials: representativity of samples of two materials from food industry. Comput Methods Appl Mech Eng 195(33–36):3960–3982

    Article  Google Scholar 

  47. du Roscoat SR et al (2007) Estimation of microstructural properties from synchrotron X-ray microtomography and determination of the REV in paper materials. Acta Mater 55(8):2841–2850

    Article  Google Scholar 

  48. Wang R et al (2012) Electrospun nanofibrous membranes for high flux microfiltration. J Membr Sci 392:167–174

    Article  Google Scholar 

  49. Pham QP, Sharma U, Mikos AG (2006) Electrospun poly(ε-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules 7(10):2796–2805

    Article  Google Scholar 

  50. Rijke AM (1970) Wettability and phylogenetic development of feather structure in water birds. J Exp Biol 52(2):469–479

    Google Scholar 

  51. Tuteja A et al (2008) Robust omniphobic surfaces. Proc Natl Acad Sci 105(47):18200–18205

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to EMD Millipore Corporation for financial support of this work. We also wish to thank Dimitrios Tzeranis for the use of his MatLab code to determine fiber orientation distribution from SEM images, and Wendy Salmon for assistance in the use of CLSM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory C. Rutledge.

Additional information

Looh Tchuin (Simon) Choong and Peng Yi authors contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3429 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choong, L.T., Yi, P. & Rutledge, G.C. Three-dimensional imaging of electrospun fiber mats using confocal laser scanning microscopy and digital image analysis. J Mater Sci 50, 3014–3030 (2015). https://doi.org/10.1007/s10853-015-8834-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8834-2

Keywords

Navigation