Skip to main content
Log in

Thermo-physical properties of heat-treatable steels in the temperature range relevant for hot-stamping applications

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In many industrial processes, the resulting mechanical properties of produced steel parts are directly influenced by the thermo-physical properties, which affect the heat treatment significantly. The quality of application-oriented simulations is strongly dependent on the input quantities, which are often generated by regression analysis or simple extrapolations. The aim of this paper is to demonstrate the influence of the thermo-physical properties on such a process simulation referring to the hot stamping. Hot stamping is an established process in the automotive industry to produce ultra-high strength parts. A typical material used for this application is the low-alloyed steel 22MnB5. The thermal conductivity of this steel was investigated referring to the temperature-dependent microstructural changes during the hot-stamping process, particularly the γ to α′ transformation. In terms of the dynamic measuring method, the specific heat capacity, the thermal expansion coefficient, the density and the thermal diffusivity for the different temperature-dependent microstructures of the steel 22MnB5 were determined. The thermal conductivity for the complete temperature range of the hot-stamping process was generated, referring to measured and extrapolated data. To account for the fast γ–α′ transformation kinetics, a novel characterization and extrapolation method was applied. The heat capacity and the thermal diffusivity have a major impact on the thermal conductivity compared to the subordinated influence of the density. The metastable austenitic condition (T ≥ 900 °C) was compared to the martensitic condition (T ≤ 400 °C). The dependent thermal conductivity is significantly dependent on the crystallographic orientation of the lattice. The face-centred cubic lattice (austenite) has referring to the body-centred cubic lattice (martensite), a proportionally low thermal conductivity. During the transformation from austenite to martensite, the development is not linear but based on complex interactions. The results reveal that the temperature-dependent thermal conductivity has to be considered for reliable process simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Takahashi M (2003) Development of High strength steels for automobiles. Nippon steel technical report, No. 88, 295–415

  2. Karbasian H, Tekkaya A (2010) A review on hot stamping. J Mater Process Technol 210:2103–2118

    Article  Google Scholar 

  3. Neugebauer R, Altan T, Geiger M (2006) Sheet metal forming at elevated temperatures. Ann CIRP 55(2):2103–2118

    Article  Google Scholar 

  4. Naderi M (2008) Hot stamping of ultra-high strength steels. Dissertation, RWTH Aachen

  5. Merklein M, Lechler J (2006) Investigation of the thermo-mechanical properties of hot stamping steels. J Mater Process Technol 177:452–455

    Article  Google Scholar 

  6. Merklein M, Lechler J, Gödel V (2007) Mechanical properties and plastic anisotropy of 22MnB5 of the quenchable high strength steel 22MnB5 at elevated temperatures. Key Eng Mater 344:79–86

    Article  Google Scholar 

  7. Geiger M, Merklein M, Hoff C (2005) Basic investigation on the hot stamping steel 22MnB5. Adv Mater Res 6–8:795–804

    Article  Google Scholar 

  8. Nishibata T, Kojima N (2013) Effect of quenching rate on hardness and microstructure of hot-stamped steel. J Alloy Compd 577S:S.549–S554

    Article  Google Scholar 

  9. Naderi M, Ketabchi M, Abbasi M (2011) Analysis of microstructure and mechanical properties of different high strength carbon steels after hot stamping. J Mater Process Technol 211:1117–1125

    Article  Google Scholar 

  10. George R, Bardelcik A, Worswick M (2012) Hot forming of boron steels using heated and cooled tooling for tailored properties. J Mater Process Technol 212:2386–2399

    Article  Google Scholar 

  11. Perez-Santiago R, Billur E, Ademaj A (2013) Hot stamping a B-pillar with tailored properties: experiments and preliminary simulation results. Int. Hot Stamping Conferences, Lulea, Sweden

  12. Akerstroem P, Oldenburg M (2006) Austenite decomposition during press hardening of a boron steel—computer simulation and test. J Mater Process Technol 174(2006):399–406

    Article  Google Scholar 

  13. Kittel C (2006) Einfuehrung in die Festkoerperphysik, 14th edn. Oldenbourg, Muenchen

    Google Scholar 

  14. Xing Z, Bao J, Yang Y (2009) Numerical simulation of hot stamping of quenchable boron steel. Mater Sci Eng A 499:28–31

    Article  Google Scholar 

  15. Yanagida A, Kurihara T, Azushima A (2010) Development of tribo-simulator for hot stamping. Int. Hot Stamping Conferences, Lulea, Sweden

  16. Tritt T (2010) Thermal conductivity. Springer, New York

    Google Scholar 

  17. Windmann M, Röttger A, Theisen W (2013) Phase formation at the interface between a boron alloyed steel substrate and an Al-rich coating. Surf Coat Technol 226:130–139

    Article  Google Scholar 

  18. Patterson J, Morris E (1994) Measurement of absolute water density, 1°C to 40°C. Metrologia 31(4):277–288

    Article  Google Scholar 

  19. Parker W, Jenkins R, Butler C (1961) Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J Appl Phys 32(9):1679–1684

    Article  Google Scholar 

  20. Kaschnitz E, Ebner R (2007) Thermal diffusivity of the aluminum alloy Al–17Si–4Cu (A390) in the solid and liquid states. Int J Thermophys 28(2):711–722

    Article  Google Scholar 

  21. Kaschnitz E, Kueblboeck M (2008) Thermal diffusivity of the aluminum alloy Al–5Mg–2Si–Mn (magsimal-59) in the solid and liquid states. High Temp High Press 37:221–230

    Google Scholar 

  22. Reed R, Clark A (1983) Materials at low temperatures. American Society for Metals, Metals Park

    Google Scholar 

  23. Tritt T, Weston D (2010) Measurement techniques and considerations for determining thermal conductivity of bulk materials. In: Tritt T (ed) Thermal conductivity. Springer, New York, pp 187–203

    Google Scholar 

  24. Richter F (1984) Die spezifische Waermekapazitaet von metallischen Werkstoffen.-II.Teil: Austenitische Staehle. Archiv fuer das Eisenhuettenwesen 55, Nr.4

  25. Cezairliyan A, Anderson A, Bonnel D (1988) Specific heat of solids, I-2 edn. Hemisphere, New York

    Google Scholar 

  26. Richter F (1973) Die wichtigsten physikalischen Eigenschaften von 52 Eisenwerkstoffen: Mitteilung aus dem Forschungsinstitut der Mannesmann AG, vol. Heft 8. Stahleisen, Duesseldorf

  27. Richter F (1983) Physikalische Eigenschaften von Staehlen und ihre Temperaturabhaengigkeit: Polynome und graphische Darstellungen, vol. Heft 10, Stahleisen, Duesseldorf

  28. Pepperhoff W, Acet M (2001) Constitution and magnetism of iron and its alloys. Springer, Berlin

    Book  Google Scholar 

  29. Norm ASTM E1461-01 (2001) Standard test method for thermal diffusivity by the flash method. American Society for Testing and Materials

  30. Carslaw HS, Jaeger JC (1986) Conduction of heat in solids, 2nd edn. Clarendon Press and Oxford University Press, Oxford c1959

    Google Scholar 

  31. Burgel R, Maier H, Niendorf T (2011) Handbuch Hochtemperatur-Werkstofftechnik: Grundlagen, Werkstoffbeanspruchungen, Hochtemperaturlegierungen und –beschichtungen, 4th edn. Vieweg+Teubner, Wiesbaden

    Book  Google Scholar 

  32. Carslaw H, Jaeger J (1980) Conduction of heat in solids. Clarendon, Oxford

    Google Scholar 

  33. Stankus S, Savchenko I, Baginskii A (2008) Thermal conductivity and thermal diffusivity coefficients of 12Kh18N10T stainless steel in a wide temperature range. High Temp 46(5):731–733

    Article  Google Scholar 

  34. Uher C (2010) Thermal conductivity of metals. In: Tritt T (ed) Thermal conductivity. Springer, New York, pp 22–88

    Google Scholar 

  35. Yang J (2010) Theory of thermal conductivity. In: Tritt T (ed) thermal conductivity. Springer, New York, pp 1–20

    Google Scholar 

  36. Williams R, Graves R, Weaver F (1987) Effect of point defects on the phonon thermal conductivity of bcc iron. J Appl Phys 62(7):2778–2783

    Article  Google Scholar 

  37. Korzhavyi PA, Ruban AV, Odqvist J (2009) Electronic structure and effective chemical and magnetic exchange interactions in bcc Fe–Cr alloys. Phys Rev B 79(5):054202

    Article  Google Scholar 

  38. Bungardt K, Spyra W (1965) Waermeleitfaehigkeit unlegierter und legierter Staehle und Legierungen bei Temperaturen zwischen 20 und 700 °C. Archiv fuer das Eisenhuettenwesen 36(4):257–267

    Google Scholar 

  39. Valls I, Casas R, Rodriguez N, Paar U (2010) Benefits from using high thermal conductivity tool steels in the hot forming of steels. La Metallurgia Italiana 11–12:23–28

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Kuepferle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuepferle, J., Wilzer, J., Weber, S. et al. Thermo-physical properties of heat-treatable steels in the temperature range relevant for hot-stamping applications. J Mater Sci 50, 2594–2604 (2015). https://doi.org/10.1007/s10853-015-8829-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8829-z

Keywords

Navigation