Skip to main content

Advertisement

Log in

In situ carbon thermal reduction method for the production of electrospun metal/SiOC composite fibers

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Various electrospun metal/SiOC (Ag/SiOC, Co/SiOC, and Cu/SiOC) composite fibers were synthesized via a carbon thermal reduction of four kinds of metal source (silver oxide nanoparticles, silver acetate, cobalt acetate, and copper trifluoro acetylacetonate). XRD results indicate that both common metal–organic metal precursors and seldom used metal oxide particles were successfully carbon thermally reduced to the corresponding metallic particles embedded in SiOC fibers, indicating that the range of metal source choices suitable for this method is quite broad. Further SEM and TEM analysis revealed that the shape and size of the formed metal particles were determined by the characteristics of the metal source in the electrospinning solution, which means these features of the metal particles can be adjusted by taking into account the solubility of the precursors in the chosen solvents. The prepared Ag/SiOC composite fibers possessed antibacterial activity for both Gram-negative E. coli bacteria and Gram-positive S. aureus bacteria and suitable permeability (~1 × 10−12 m2), constituting a promising material for antibacterial filtration application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Luo CJ, Stoyanov SD, Stride E, Pelan E, Edirisinghe M (2012) Electrospinning versus fibre production methods: from specifics to technological convergence. Chem Soc Rev 41:4708–4735

    Article  Google Scholar 

  2. Sigmund W, Yuh J, Park H, Maneeratana V, Pyrgiotakis G, Daga A, Taylor J, Nino JC (2006) Processing and structure relationships in electrospinning of ceramic fiber systems. J Am Ceram Soc 89:395–407

    Article  Google Scholar 

  3. Kaur S, Sundarrajan S, Rana D, Sridhar R, Gopal R, Matsuura T, Ramakrishna S (2014) Review: the characterization of electrospun nanofibrous liquid filtration membranes. J Mater Sci 49:6143–6159. doi:10.1007/s10853-014-8308-y

    Article  Google Scholar 

  4. Goh YF, Shakir I, Hussain R (2013) Electrospun fibers for tissue engineering, drug delivery, and wound dressing. J Mater Sci 48:3027–3054. doi:10.1007/s10853-013-7145-8

    Article  Google Scholar 

  5. Lu X, Wang C, Wei Y (2009) One-dimensional composite nanomaterials: synthesis by electrospinning and their applications. Small 5:2349–2370

    Article  Google Scholar 

  6. Zhang L, Aboagye A, Kelkar A, Lai C, Fong H (2013) A review: carbon nanofibers from electrospun polyacrylonitrile and their applications. J Mater Sci 49:463–480. doi:10.1007/s10853-013-7705-y

    Article  Google Scholar 

  7. Dai Y, Liu W, Formo E, Sun Y, Xia Y (2011) Ceramic nanofibers fabricated by electrospinning and their applications in catalysis, environmental science, and energy technology. Polym Adv Technol 22:326–338

    Article  Google Scholar 

  8. Pant HR, Pandeya DR, Nam KT, Baek W-i, Hong ST, Kim HY (2011) Photocatalytic and antibacterial properties of a TiO2/nylon-6 electrospun nanocomposite mat containing silver nanoparticles. J Hazard Mater 189:465–471

    Article  Google Scholar 

  9. He D, Hu B, Yao QF, Wang K, Yu SH (2009) Large-scale synthesis of flexible free-standing SERS substrates with high sensitivity: electrospun PVA nanofibers embedded with controlled alignment of silver nanoparticles. ACS Nano 3:3993–4002

    Article  Google Scholar 

  10. Wang Y, Yang Q, Shan G, Wang C, Du J, Wang S, Li Y, Chen X, Jing X, Wei Y (2005) Preparation of silver nanoparticles dispersed in polyacrylonitrile nanofiber film spun by electrospinning. Mater Lett 59:3046–3049

    Article  Google Scholar 

  11. Son WK, Youk JH, Lee TS, Park WH (2004) Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles. Macromol Rapid Commun 25:1632–1637

    Article  Google Scholar 

  12. Colombo P, Mera G, Riedel R, Sorarù GD (2010) Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J Am Ceram Soc 93:1805–1837

    Google Scholar 

  13. Zaheer M, Motz G, Kempe R (2011) The generation of palladium silicide nanoalloy particles in a SiCN matrix and their catalytic applications. J Mater Chem 21:18825

    Article  Google Scholar 

  14. Seifollahi Bazarjani M, Kleebe H-J, Müller MM, Fasel C, Baghaie Yazdi M, Gurlo A, Riedel R (2011) Nanoporous silicon oxycarbonitride ceramics derived from polysilazanes in situ modified with nickel nanoparticles. Chem Mater 23:4112–4123

    Article  Google Scholar 

  15. Glatz G, Schmalz T, Kraus T, Haarmann F, Motz G, Kempe R (2010) Copper-containing SiCN precursor ceramics (Cu@ SiCN) as selective hydrocarbon oxidation catalysts using air as an oxidant. Chem Eur J 16:4231–4238

    Article  Google Scholar 

  16. Ionescu E, Kleebe H-J, Riedel R (2012) Silicon-containing polymer-derived ceramic nanocomposites (PDC-NCs): preparative approaches and properties. Chem Soc Rev 41:5032–5052

    Article  Google Scholar 

  17. Zaheer M, Schmalz T, Motz G, Kempe R (2012) Polymer derived non-oxide ceramics modified with late transition metals. Chem Soc Rev 41:5102–5116

    Article  Google Scholar 

  18. Sorarù GD, Liu Q, Interrante LV, Apple T (1998) Role of precursor molecular structure on the microstructure and high temperature stability of silicon oxycarbide glasses derived from methylene-bridged polycarbosilanes. Chem Mater 10:4047–4054

    Article  Google Scholar 

  19. Guo A, Roso M, Modesti M, Liu J, Colombo P (2014) Preceramic polymer-derived SiOC fibers by electrospinning. J Appl Polym Sci 131:39836. doi:10.1002/APP.39836

    Google Scholar 

  20. Patel AC, Li S, Wang C, Zhang W, Wei Y (2007) Electrospinning of porous silica nanofibers containing silver nanoparticles for catalytic applications. Chem Mater 19:1231–1238

    Article  Google Scholar 

  21. Kim ES, Kim SH, Lee CH (2010) Electrospinning of polylactide fibers containing silver nanoparticles. Macromol Res 18:215–221

    Article  Google Scholar 

  22. Biasetto L, Colombo P, Innocentini MD, Mullens S (2007) Gas permeability of microcellular ceramic foams. Ind Eng Chem Res 46:3366–3372

    Article  Google Scholar 

  23. Ginzburg M, MacLachlan MJ, Yang SM, Coombs N, Coyle TW, Raju NP, Greedan JE, Herber RH, Ozin GA, Manners I (2002) Genesis of nanostructured, magnetically tunable ceramics from the pyrolysis of cross-linked polyferrocenylsilane networks and formation of shaped macroscopic objects and micron scale patterns by micromolding inside silicon wafers. J Am Chem Soc 124:2625–2639

    Article  Google Scholar 

  24. MacLachlan MJ, Ginzburg M, Coombs N, Coyle TW, Raju NP, Greedan JE, Ozin GA, Manners I (2000) Shaped ceramics with tunable magnetic properties from metal-containing polymers. Science 287:1460–1463

    Article  Google Scholar 

  25. Colombo P, Gambaryan-Roisman T, Scheffler M, Buhler P, Greil P (2001) Conductive ceramic foams from preceramic polymers. J Am Ceram Soc 84:2265–2268

    Article  Google Scholar 

  26. Innocentini M, Faleiros R, Pisani R Jr, Thijs I, Luyten J, Mullens S (2010) Permeability of porous gel cast scaffolds for bone tissue engineering. J Porous Mater 17:615–627

    Article  Google Scholar 

  27. Wang Y, Li Y, Yang S, Zhang G, An D, Wang C, Yang Q, Chen X, Jing X, Wei Y (2006) A convenient route to polyvinyl pyrrolidone/silver nanocomposite by electrospinning. Nanotechnology 17:3304–3307

    Article  Google Scholar 

  28. Schmalz T, Kraus T, Günthner M, Liebscher C, Glatzel U, Kempe R, Motz G (2011) Catalytic formation of carbon phases in metal modified, porous polymer derived SiCN ceramics. Carbon 49:3065–3072

    Article  Google Scholar 

  29. Guo A, Roso M, Modesti M, Maire E, Adrien J, Colombo P, Characterization of electrospun SiOC ceramic fiber mats, submitted to J Mater Sci (JMSC-D-14-04059)

Download references

Acknowledgements

A. Guo gratefully acknowledges the financial support of the Chinese Scholarship Council (CSC) and Dr. Paola Brun (Department of Molecular Medicine, University of Padova, Italy) for the support with antimicrobial assays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anran Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, A., Roso, M., Colombo, P. et al. In situ carbon thermal reduction method for the production of electrospun metal/SiOC composite fibers. J Mater Sci 50, 2735–2746 (2015). https://doi.org/10.1007/s10853-015-8827-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8827-1

Keywords

Profiles

  1. Paolo Colombo
  2. Michele Modesti