Advertisement

Journal of Materials Science

, Volume 50, Issue 7, pp 2682–2690 | Cite as

High-temperature wetting and interfacial interaction between liquid Al and TiB2 ceramic

  • L. XiEmail author
  • I. Kaban
  • R. Nowak
  • B. Korpała
  • G. Bruzda
  • N. Sobczak
  • N. Mattern
  • J. Eckert
Original Paper

Abstract

The wetting behaviour and interfacial interactions between liquid Al and TiB2 ceramic have been studied by the sessile drop technique in the temperature range from 700 to 1400 °C. At about 800 °C, liquid Al starts to wet TiB2 and at about 1000 °C it completely spreads over the ceramic. Al3Ti and Al2O3 are found to be the main phases precipitating at the interface. Starting from 1000 °C, liquid Al either fill pores or penetrates along the grain boundaries of the TiB2 ceramic. Scanning electron microscopy analysis of the interfaces evidences that the TiB2 grains remain intact after the aluminium melt/ceramic interaction even at 1400 °C.

Keywords

Contact Angle Al3Ti Sessile Drop Liquid Aluminium Apparent Contact Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

L. Xi acknowledges the Chinese Scholarship Council (CSC) for the financial support of her research work at the IFW Dresden. The German Academic Exchange Service (DAAD), the Ministry of Science and Higher Education of Poland and the Foundry Research Institute in Cracow are acknowledged for the support in the frame of the German–Polish collaboration program. The authors thank B. Opitz and K. Schröder for technical support.

References

  1. 1.
    Basu B, Balani K (2011) Advanced structural ceramics. Wiley, HobokenCrossRefGoogle Scholar
  2. 2.
    Justin JF, Jankowiak A (2011) Ultra high temperature ceramics: densification, properties and thermal stability. AerospaceLab 3:AL03-08Google Scholar
  3. 3.
    Witusiewicz VT, Bondar AA, Hecht U, Rex S, Velikanova TYa (2008) The Al–B–Nb–Ti system. Re-assessment of the constituent binary systems B-Nb and B-Ti on the basis of new experimental data. J Alloys Compd 448:185–194CrossRefGoogle Scholar
  4. 4.
    Smith AV, Chung DDL (1996) Titanium diboride particle-reinforced aluminium with high wear resistance. J Mater Sci 31:5961–5973. doi: 10.1007/BF01152146 CrossRefGoogle Scholar
  5. 5.
    Bayraktar E, Ayari F, Katundi D, Chevalier J-P, Bonnet F (2011) Damage analysis of the ceramic reinforced steel matrix composites sheets: experimental and numerical study. J Achiev Mater Manufact Eng 49:53–61Google Scholar
  6. 6.
    Gupta N, Prasad VVB, Madhu V, Basu B (2012) Ballistic studies on TiB2-Ti functionally graded armor ceramics. Defence Sci J 62:382–389CrossRefGoogle Scholar
  7. 7.
    Jones GP, Pearson J (1976) Factors affecting the grain-refinement of aluminum using titanium and boron additives. Metall Trans B 7:223–234CrossRefGoogle Scholar
  8. 8.
    Greer AL, Bunn AM, Tronche A, Evans PV, Bristow DJ (2000) Modelling of inoculation of metallic melts: application to grain refinement of aluminium by Al-Ti-B. Acta Mater 48:2823–2835CrossRefGoogle Scholar
  9. 9.
    Kaban I, Köhler M, Ratke L, Hoyer W, Mattern N, Eckert J, Greer AL (2011) Interfacial tension, wetting and nucleation in Al-Bi and Al-Pb monotectic alloys. Acta Mater 59:6880–6889CrossRefGoogle Scholar
  10. 10.
    Rhee SK (1970) Wetting of ceramics by liquid aluminum. J Am Ceram Soc 53:386–389CrossRefGoogle Scholar
  11. 11.
    Samsonov GV, Panasyuk AD, Borovikova MS (1973) Contact reaction between refractory compounds and liquid metals. Acad Sci Ukra SSR 12:403–407Google Scholar
  12. 12.
    Weirauch DA Jr, Krafick WJ, Ackart G, Ownby PD (2005) The wettability of titanium diboride by molten aluminium drops. J Mater Sci 40:2301–2306. doi: 10.1007/s10853-005-1949-0 CrossRefGoogle Scholar
  13. 13.
    Dorward RC (1982) Aluminum penetration and fracture of titanium diboride. J Am Ceram Soc 65:C-6CrossRefGoogle Scholar
  14. 14.
    Zdaniewski WA (1985) Role of microstructure and intergranular phases in stress corrosion of TiB2 exposed to liquid aluminum. J Am Ceram Soc 68:C-309–C-312CrossRefGoogle Scholar
  15. 15.
    Nord-Varhaug K (1996) TEM investigation of impurity phases and the penetration of liquid aluminum in hot isostatically pressed TiB2 compacts. J Am Ceram Soc 79:1147–1154CrossRefGoogle Scholar
  16. 16.
    Heidari H, Alamdari H, Dubéa D, Schulz R (2012) Interaction of molten aluminum with porous TiB2-based ceramics containing Ti-Fe additives. J Eur Ceram Soc 32:937–945CrossRefGoogle Scholar
  17. 17.
    Forsthoefel K, Sneddon LG (2004) Precursor routes to Group 4 metal borides, and metal boride/carbide and metal boride/nitride composites. J Mater Sci 39:6043–6049. doi: 10.1023/B:JMSC.0000041700.54302.0d CrossRefGoogle Scholar
  18. 18.
    Köhler M (2008) Aufbau und Erprobung eines Messplatzes zur Untersuchung der Oberflächenspannung flüssiger Metalllegierungen nach der Methode des liegenden Tropfens. Diploma thesis, Chemnitz University of Technology, Chemnitz, GermanyGoogle Scholar
  19. 19.
    Sobczak N, Nowak R, Radziwill W, Budzioch J, Glenz A (2008) Experimental complex for investigations of high temperature capillarity phenomena. Mater Sci Eng A 495:43–49CrossRefGoogle Scholar
  20. 20.
    Liggieri L, Passerone A (1989) An automatic technique for measuring the surface tension of liquid metals. High Temp Technol 7:82–86Google Scholar
  21. 21.
    Cichy H, Fromm E (1991) Oxidation kinetics of metal films at 300 K studied by the piezoelectric quartz crystal microbalance technique. Thin Solid Films 195:147–158CrossRefGoogle Scholar
  22. 22.
    Martin M, Fromm E (1993) Kinetics of aluminium film oxidation measured by a modified quartz crystal microbalance. Thin Solid Films 236:199–203CrossRefGoogle Scholar
  23. 23.
    Devyatkin SV, Kaptay G (2000) Chemical and electrochemical behavior of titanium diboride in cryolite-alumina melt and in molten aluminum. J Solid State Chem 154:107–109CrossRefGoogle Scholar
  24. 24.
    Coudurier L, Adorian J, Pique D, Eustathopoulos N (1984) Etude de la mouillabilité par l’aluminium liquide de l’alumine et de l’alumine recouverte d’une couche de métal ou de composé réfractaire. Rev Int Hautes Tempér Réfract 21:81–93Google Scholar
  25. 25.
    Hehn W, Fromm E (1988) Anfangsstadium der Oxidation von Alumini- umschmelzen bei Drücken unterhalb von 10−6 bar. Aluminium 64:180–185Google Scholar
  26. 26.
    Sobczak N, Astana R, Radziwill W, Nowak R, Kudyba A (2007) The role of aluminum oxidation in the wetting-bonding relationship of Al/oxide couples. Arch Metal Mater 52:55–65Google Scholar
  27. 27.
    Koh YH, Lee SY, Kim HE (2001) Oxidation behavior of TiB2 at elevated temperatures. J Am Ceram Soc 84:239–241CrossRefGoogle Scholar
  28. 28.
    Avraham S, Kaplan WD (2005) Reactive wetting of rutile by liquid aluminium. J Mater Sci 40:1093–1100. doi: 10.1007/s10853-005-6922-4 CrossRefGoogle Scholar
  29. 29.
    Sobczak N, Stobierski L, Radziwill W, Ksiazek M, Warmuzek M (2004) Wettability and interfacial reactions in Al/TiO2. Surf Interface Anal 36:1067–1070CrossRefGoogle Scholar
  30. 30.
    Feng CF, Froyen L (2000) Formation of Al3Ti and Al2O3 from an Al-TiO2 system for preparing in situ aluminum matrix composites. Compos A 31A:385–390CrossRefGoogle Scholar
  31. 31.
    Gheorghe I, Rack HJ (2002) Reactive infiltration of 25 vol pct TiO2/Al composites. Metall Mater Trans A 33:2155–2162CrossRefGoogle Scholar
  32. 32.
    Dake LS, Lad RJ (1993) Electronic and chemical interactions at aluminum/TiO2(110) interfaces. Surf Sci 289:297–306CrossRefGoogle Scholar
  33. 33.
    Gotman I, Koczak MJ (1994) Fabrication of Al matrix in situ composites via self-propagating synthesis. Mater Sci Eng A 187:189–199CrossRefGoogle Scholar
  34. 34.
    Frage N, Frumin N, Levin L, Polak M, Dariel MP (1998) High-temperature phase equilibria in the Al-rich corner of the Al-Ti-C system. Metal Mater Trans A 29:1341–1345CrossRefGoogle Scholar
  35. 35.
    Froumin N, Frage N, Polak M, Dariel MP (1997) Wettability and phase formation in TiCx/Al system. Scripta Mater 37:1263–1267CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • L. Xi
    • 1
    Email author
  • I. Kaban
    • 1
    • 2
  • R. Nowak
    • 3
  • B. Korpała
    • 3
  • G. Bruzda
    • 3
  • N. Sobczak
    • 3
    • 4
  • N. Mattern
    • 1
  • J. Eckert
    • 1
    • 2
  1. 1.IFW DresdenInstitute for Complex MaterialsDresdenGermany
  2. 2.TU DresdenInstitute of Materials ScienceDresdenGermany
  3. 3.Center for High-Temperature StudiesFoundry Research InstituteCracowPoland
  4. 4.Motor Transport InstituteWarsawPoland

Personalised recommendations