Journal of Materials Science

, Volume 50, Issue 5, pp 2327–2336 | Cite as

Identification of densification mechanisms of pressure-assisted sintering: application to hot pressing and spark plasma sintering of alumina

  • G. Antou
  • P. Guyot
  • N. Pradeilles
  • M. Vandenhende
  • A. Maître
Original Paper

Abstract

The identification of densification mechanism during hot uniaxial pressing is developed using an approach based on classical creep investigation. This approach is justified and generalised using continuum mechanics based sintering models. The benefit of this approach is to directly determine the densification parameters from the analysis of shrinkage rates of the porous material, rather than to transpose the creep mechanisms identified for dense material at given thermomechanical conditions to the densification progress. The suggested approach is applied to compare the densification mechanisms involved at the initial stage of sintering (i.e. for 60 % < relative density < 75 %) during hot pressing (HP) and spark plasma sintering (SPS) of a submicrometric alpha-alumina powder. From the stress exponent and activation energy values, it is shown that the main mechanism involves grain boundary sliding accommodated by dislocation motion and particle fracture in both cases. However, it appears that, in SPS, the high heating rate could reduce the existence of surface diffusion phenomena at the beginning of the consolidation process, as suggested by the higher activation energy compared to the one determined for HP.

References

  1. 1.
    Munir ZA, Anselmi-Tamburini U, Ohyanagi M (2006) The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J Mater Sci 41(3):763–777CrossRefGoogle Scholar
  2. 2.
    Risbud SH, Han Y-H (2013) VP Set 54 Editors, preface and historical perspective on spark plasma sintering. Scr Mater 69(2):105–206CrossRefGoogle Scholar
  3. 3.
    Guillon O, Langer J (2010) Master sintering curve applied to the field-assisted sintering technique. J Mater Sci 45:5191–5195CrossRefGoogle Scholar
  4. 4.
    Bernard-Granger G, Guizard C (2007) Spark plasma sintering of a commercially available granulated zirconia powder: I. Sintering path and hypothesis about the mechanism(s) controlling densification. Acta Mater 55:3493–3504CrossRefGoogle Scholar
  5. 5.
    Su H, Johnson DL (1996) Master sintering curve: a practical approach to sintering. J Am Ceram Soc 79(12):3211–3224CrossRefGoogle Scholar
  6. 6.
    Raj R (1982) Separation of cavitation-strain and creep-strain during deformation. J Am Ceram Soc 65(3):C-46CrossRefGoogle Scholar
  7. 7.
    Chakravarty D, Chokshi A (2014) Direct characterizing of densification mechanisms during spark plasma sintering. J Am Ceram Soc 97(3):765–771CrossRefGoogle Scholar
  8. 8.
    Bordia RK, Raj R (1988) Sintering of TiO2-Al2O3 composites: a model experimental investigation. J Am Ceram Soc 71(4):302–310CrossRefGoogle Scholar
  9. 9.
    Olevsky EA, Froyen L (2006) Constitutive modeling of spark-plasma sintering of conductive materials. Scr Mater 55:1175–1178CrossRefGoogle Scholar
  10. 10.
    Guyot P, Rat V, Coudert JF, Jay F, Maître A, Pradeilles N (2012) Does the Branly effect occur in spark plasma sintering? J Phys D Appl Phys 45(9):92001–92004CrossRefGoogle Scholar
  11. 11.
    Olevsky EA, Froyen L (2009) Impact of thermal diffusion on densification during SPS. J Am Ceram Soc 92(S1):S122–S132CrossRefGoogle Scholar
  12. 12.
    Bernard-Granger G, Guizard C (2009) Densification mechanism involved during spark plasma sintering of a codoped α-alumina material: Part I. Formal sintering analysis. J Mater Res 24(1):179–186CrossRefGoogle Scholar
  13. 13.
    Gurt-Santanach J, Weibel A, Estournès C, Yang Q, Laurent C, Peigney A (2011) Spark plasma sintering of alumina : study of parameters, formal sintering analysis and hypotheses on the mechanism(s) involved in densification and grain growth. Acta Mater 59(4):1400–1408CrossRefGoogle Scholar
  14. 14.
    Demuynck M, Erauw JP, Van der Biest O, Delannay F, Cambier F (2012) Densification of alumina by SPS and HP: A Comparative Study. J Europ Ceram Soc 32:1957–1964CrossRefGoogle Scholar
  15. 15.
    Gendre M, Maitre A, Trolliard G (2010) A study of the densification mechanisms during spark plasma sintering of zirconium (oxy-)carbide powders. Acta Mater 58:2598–2609CrossRefGoogle Scholar
  16. 16.
    Guyot P, Antou G, Pradeilles N, Weibel A, Vandenhende M, Chevallier G, Peigney A, Estournès C, Maître A (2014) Hot pressing and spark plasma sintering of alumina: discussion about an analytical modelling used for sintering mechanism determination. Scr Mater 84–85:35–38CrossRefGoogle Scholar
  17. 17.
    Coble RL (1970) Diffusion models for hot pressing with surface energy and pressure effects as driving forces. J Appl Phys 41:4798–4807CrossRefGoogle Scholar
  18. 18.
    Rahaman MN (2008) Sintering of Ceramics. CRC Press, Tayor & Francis Group, New York, pp 81–97Google Scholar
  19. 19.
    Antou G, Gendre M, Trolliard G, Maître A (2009) Spark plasma sintering of zirconium carbide and oxycarbide: finite element modeling of current density, temperature, and stress distributions. J Mater Sci 24(2):404–412Google Scholar
  20. 20.
    Kuhn HA, Downey CL (1971) Deformation characteristics and plasticity theory of sintered powder materials. Int J Powder Metall 7:15–25Google Scholar
  21. 21.
    Green R (1972) A plasticity theory for porous solids. Int J Powder Metall 14:215–224Google Scholar
  22. 22.
    Abouaf M, Chenot J (1986) A numerical model for hot deformation of metal powders. J Theor Appl Mech 5:121–140Google Scholar
  23. 23.
    Cocks AC (1989) Inelastic deformation of porous materials. J Mech Phys Solids 37(6):693–715CrossRefGoogle Scholar
  24. 24.
    Wolff C, Mercier S, Couque H, Molinari A (2012) Modeling of conventional hot compaction and spark plasma sintering based on modified micromechanical models of porous materials. Mech Mater 49:72–91CrossRefGoogle Scholar
  25. 25.
    Mukherjee A, Bird J, Dorn J (1969) Experimental correlation for high-temperature creep. Trans ASM 62:155–179Google Scholar
  26. 26.
    Besson J, Abouaf M (1992) Rheological of porous alumina and simulation of hot isostatic pressing. J Am Ceram Soc 75(8):2165–2172CrossRefGoogle Scholar
  27. 27.
    Scherer GW (1979) Sintering inhomogeneous glasses: application to optical waveguides. J Non-Cryst Solids 34:239–256CrossRefGoogle Scholar
  28. 28.
    Bordia RK, Scherer GW (1988) On constrained sintering—I. Constitutive model for a sintering body. Acta Metall 36(9):2393–2397CrossRefGoogle Scholar
  29. 29.
    Cho JH, Kim KT (2001) Densification of mixed metal powder at high temperature. Int J Mech Sci 43:921–933CrossRefGoogle Scholar
  30. 30.
    Skorohod VV (1972) Rheological basis of the theory of sintering. Naukova Dumka, KievGoogle Scholar
  31. 31.
    Olevsky EA (1998) Theory of sintering: from discrete to continuum. Mat Sci Eng R23:41–100CrossRefGoogle Scholar
  32. 32.
    Olevsky EA, Bogachev I, Maximenko A (2013) Spark-plasma sintering efficiency control by inter-particle contact area growth: a viewpoint. Scr Mater 69:112–116CrossRefGoogle Scholar
  33. 33.
    Langer J, Hoffmann MJ, Guillon O (2009) Direct comparison between hot pressing and electric field-assisted sintering of submicron alumina. Acta Mater 57:5454–5465CrossRefGoogle Scholar
  34. 34.
    Helle AS, Easterling KE, Ashby MF (1985) Hot-isostatic pressing diagrams: new developments. Acta Metall 33(12):2163–2174CrossRefGoogle Scholar
  35. 35.
    Olevsky EA, Bradbury WL, Haines CD, Martin DG, Kapoor D (2012) Fundamental aspects of spark plasma sintering: I. Experimental analysis of scalability. J Am Ceram Soc 95(8):2406–2413CrossRefGoogle Scholar
  36. 36.
    Aman Y, Garnier V, Djurado E (2011) Spark plasma sintering of pure α-alumina. J Am Ceram Soc 94(9):2825–2833CrossRefGoogle Scholar
  37. 37.
    Frost HJ, Ashby MF (1982) Deformation-mechanism maps, the plasticity and creep of metals and ceramics. Pergamon Press, OxfordGoogle Scholar
  38. 38.
    Ruano OA, Wadsworth J, Sherby OD (2003) Deformation of fine-grained alumina by grain boundary sliding accommodated by slip. Acta Mater 51(12):3617–3634CrossRefGoogle Scholar
  39. 39.
    Calvié E, Joly-Pottuz L, Esnouf C, Clément P et al (2012) Real time TEM observation of alumina ceramic nano-particles during compression. J Europ Ceram Soc 32(10):2067–2071CrossRefGoogle Scholar
  40. 40.
    Watchman JB, Maxwell LH (1959) Strength of synthetic single crystal sapphire and ruby as a function of temperature and orientation. J Am Ceram Soc 42(9):432–433CrossRefGoogle Scholar
  41. 41.
    Álvarez Clemares I, Borrell A, Agouram S, Torrecillas R, Fernández A (2013) Microstructure and mechanical effects of spark plasma sintering in alumina monolithic ceramics. Scr Mater 68(8):603–606CrossRefGoogle Scholar
  42. 42.
    Morita K, Kim B-N, Yoshida H, Hiraga K (2010) Densification behavior of a fine-grained MgAl2O4 spinel during spark plasma sintering (SPS). Scr Mater 63:565–568CrossRefGoogle Scholar
  43. 43.
    Raether F, Schulze Horn P (2009) Investigation of sintering mechanisms of alumina using kinetic field and master sintering diagrams. J Europ Ceram Soc 29(11):2225–2234CrossRefGoogle Scholar
  44. 44.
    Brook RJ (1982) Fabrication principles for the production of ceramics with superior mechanical properties. Proc Br Ceram Soc 32:7–24Google Scholar
  45. 45.
    Heuer A (2008) Oxygen and aluminum diffusion in α-Al2O3: how much do we really understand? J Europ Ceram Soc 28(7):1495–1507CrossRefGoogle Scholar
  46. 46.
    Zhou Y, Hirao K, Yamauchi Y, Kanzaki S (2004) Densification and grain growth in pulse electric current sintering of alumina. J Europ Ceram Soc 24:3465–3470CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • G. Antou
    • 1
  • P. Guyot
    • 1
  • N. Pradeilles
    • 1
  • M. Vandenhende
    • 1
  • A. Maître
    • 1
  1. 1.Laboratoire Sciences des Procédés Céramiques et Traitements de Surface, UMR CNRS 7315, Centre Européen de la CéramiqueLimoges CedexFrance

Personalised recommendations