Skip to main content
Log in

Synergistic effect of vegetable protein and silicon addition on geopolymeric foams properties

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Organic–inorganic hybrid foams based on an alkali alumino-silicate matrix were prepared using different foaming methods. Firstly, silico-aluminate inorganic matrix, activated through a sodium silicate solution, was prepared at room temperature. The obtained viscous paste was expanded by means of silicon metal redox reaction in alkaline media in combination with protein-assisted foaming. The foamed systems were hardened at defined temperature and time and then characterized by FTIR, scanning electron microscopy, and compression tests. The high temperature behavior and specific surface area were also evaluated. The experimental findings highlighted that the combination of silicon metal and vegetable protein allowed tailoring hybrid foams with enhanced properties: good yield strength and thermal resistance typical of geopolymeric foam with a ductile behavior (toughness) and low density typical of organic foams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Landi E, Medri V, Papa E, Dedecek J, Klein P, Benito P, Vaccari A (2013) Alkali-bonded ceramics with hierarchical tailored porosity. Appl Clay Sci 73:56–64

    Article  Google Scholar 

  2. Kamseu E, Nait-Ali B, Bignozzi MC, Leonelli C, Rossignol S, Smith DS (2012) Bulk composition and microstructure dependence of effective thermal conductivity of porous inorganic polymer cements. J Eur Ceram Soc 32(8):1593–1603

    Article  Google Scholar 

  3. Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, van Deventer JSJ (2007) Geopolymer technology: the current state of the art. J Mater Sci 42(9):2917–2933. doi:10.1007/s10853-006-0637-z

    Article  Google Scholar 

  4. Van Bonin W, Nehen U, Von Gizycki U (1975) Hydrogen peroxides blowing agent for silicate foams. US Patent 3,864,137

  5. Vaou V, Panias D (2010) Thermal insulating foamy geopolymers from perlite. Miner Eng 23:1146–1151

    Article  Google Scholar 

  6. Prud’Homme E, Michaud P, Joussein E, Peyratout C, Smith A, Rossignol S (2011) In situ inorganic foams prepared from various clays at low temperature. Appl Clay Sci 51(1):15–22

    Article  Google Scholar 

  7. Studart AR, Gonzenbach UT, Tervoort E, Gauckler LJ (2006) Processing routes to macroporous ceramics: a review. J Am Ceram Soc 89(6):1771–1789

    Article  Google Scholar 

  8. Colombo P, Vakifahmetoglu C, Costacurta S (2010) Fabrication of ceramic with hierarchical porosity. J Mater Sci 45:5424–5455. doi:10.1007/s10853-010-4708-9

    Google Scholar 

  9. Scheffler M, Colombo P (2005) Cellular ceramics: structure, manufacturing, properties and applications. Wiley–VCH Verlag GmbH, Weinheim, Germany

  10. Lyckfeldt O, Brandt J, Lesca S (2000) Protein forming—a novel shaping technique for ceramics. J Eur Ceram Soc 20(14):2551–2559

    Article  Google Scholar 

  11. Garrn I, Reetz C, Brandes N, Kroh LW, Schubert H (2004) Clot-forming: the use of proteins as binders for producing ceramic foams. J Eur Ceram Soc 24(3):579–587

    Article  Google Scholar 

  12. Murray BS, Ettelaie R (2004) Foam stability: proteins and nanoparticles. Curr Opin Colloid In 9(5):314–320

    Article  Google Scholar 

  13. Bos MA, Van Vliet T (2001) Interfacial rheological properties of adsorbed protein layers and surfactants: a review. Adv Colloid Interfac 91(3):437–471

    Article  Google Scholar 

  14. Damodaran S (2005) Protein stabilization of emulsions and foams. J Food Sci 70(3):54–66

    Article  Google Scholar 

  15. Chen J, Dickinson E (1998) Viscoelastic properties of protein-stabilized emulsions: effect of protein-surfactant interactions. J Agr Food Chem 46(1):91–97

    Article  Google Scholar 

  16. Verdolotti L, Di Maio E, Forte G, Lavorgna M, Iannace S (2010) Hydration-induced reinforcement of polyurethane–cement foams: solvent resistance and mechanical properties. J Mater Sci 45(12):3388–3391. doi:10.1007/s10853-010-4416-5

    Article  Google Scholar 

  17. Xu H, Van Deventer JSJ (2000) The geopolymerisation of alumino-silicate minerals. Int J Miner Process 59(3):247–266

    Article  Google Scholar 

  18. Wang L, Tomura S, Suzuki M, Ohashi F, Inukai K, Maeda M (2001) Synthesis of mesoporous silica material with sodium hexafluorosilicate as silicon source under ultra-low surfactant concentration. J Mater Sci Lett 20:277–280

    Article  Google Scholar 

  19. Zhang XG (2001) Elettrochemistry of silicon and its oxides. Kluver Academic/Plenum Publisher, New York

    Google Scholar 

  20. Mo BH, Zhu H, Cui XM, He Y, Gong SY (2014) Effect of curing temperature on geopolymerization of metakaolin-based geopolymers. Appl Clay Sci 99:144–148

    Article  Google Scholar 

  21. Xu H, van Deventer JS (2003) The effect of alkali metals on the formation of geopolymeric gels from alkali-feldspars. Colloid Surface A 216(1):27–44

    Article  Google Scholar 

  22. Komnitsas K, Zaharaki D (2007) Geopolymerisation: a review and prospects for the minerals industry. Miner Eng 20(14):1261–1277

    Article  Google Scholar 

  23. Davidovits J (1991) Geopolymers. J Therm Anal Calorim 37(8):1633–1656

    Article  Google Scholar 

  24. Medri V, Papa E, Dedecek J, Jirglova H, Benito P, Vaccari A, Landi E (2013) Effect of metallic Si addition on polymerization degree of in situ foamed alkali-aluminosilicates. Ceram Int 39(7):7657–7668

    Article  Google Scholar 

  25. Gibson LJ, Ashby MF (1999) Cellular solids: structure and properties. Cambridge University Press, Cambridge, MA

    Google Scholar 

  26. Colombo P, Hellmann JR, Shelleman DL (2001) Mechanical properties of silicon oxycarbide ceramic foams. J Am Ceram Soc 84(10):2245–2251

    Article  Google Scholar 

  27. Hung TC, Huang JS, Wang YW, Fan YC (2013) Microstructure and properties of metakaolin-based inorganic polymer foams. J Mater Sci 48(21):7446–7455. doi:10.1007/s10853-013-7559-3

    Article  Google Scholar 

  28. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J (1985) Pure Appl Chem 57:603–619

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Italian Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR), and Ministero dello Sviluppo Economico within the framework of PON-2007-2013 under Grant PON02_000293206086 “COCET”. The authors gratefully acknowledge Dott. Manlio Colella for helping in analyzing SEM microscopy data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Liguori.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verdolotti, L., Liguori, B., Capasso, I. et al. Synergistic effect of vegetable protein and silicon addition on geopolymeric foams properties. J Mater Sci 50, 2459–2466 (2015). https://doi.org/10.1007/s10853-014-8801-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8801-3

Keywords

Navigation