Skip to main content

Effect of modified silica nanoparticle on the properties of bio-based polyurethane ultrafine fibers

Abstract

Bio-based polyurethane (BPU) has been developed using a castor oil/poly(ε-caprolactone) hybrid polyol, and hydrophobic BPU ultrafine fibers containing modified silica (m-silica) were successfully fabricated using an electrospinning process. The successful modification of the silica nanoparticles and the synthesis of BPU composites were confirmed by Fourier transform infrared spectroscopy data. The rheological properties of the BPU solutions and BPU/m-silica suspensions were investigated to characterize any structural changes induced by incorporation of the m-silica and to control the electrospinning parameters. The rheological analysis revealed that a network structure existed between the BPU and m-silica, which led to a remarkable improvement in the mechanical properties and thermal stability. A morphological change in the ultrafine fibers on incorporation of the m-silica nanoparticles was also observed: the average fiber diameter of the hybrid ultrafine fibers decreased with increasing m-silica content. Furthermore, the m-silica nanoparticles resulted in a change in the effective surface wettability of the BPU ultrafine fibers resulting in a change from hydrophilic to hydrophobic behavior. The present BPU/m-silica ultrafine fibers, which have improved rheological properties, hydrophobic surface, mechanical properties, and thermal stability, may be a potential candidate to replace petroleum-based polyurethane membrane, in the field of biofilters, eco-friendly textiles, and biomedical engineering.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Novak BM (1993) First tetrathiafulvalene (TTF) cation-radical salt containing the inorganic polyoxometalate β-[Mo8O26]4. Adv Mater 5:283–285

    Article  Google Scholar 

  2. 2.

    Lan T, Kaviratna TD, Pinnavaia TJ (1994) On the nature polyimide–clay hybrid composites. Chem Mater 6:573–575

    Article  Google Scholar 

  3. 3.

    Park SH, Lee SH, Kim SH (2013) Isothermal crystallization behavior and mechanical properties of polylactide/carbon nanotube nanocomposites. Composites A 46:11–18

    Article  Google Scholar 

  4. 4.

    Merkel TC, Freeman BD, Spontak RJ, He Z, Pinnau I, Meakin P, Hill AJ (2002) Ultrapermeable, reverse-selective nanocomposite membranes. Science 296:519–522

    Article  Google Scholar 

  5. 5.

    Kim SH, Ahn SH, Hirai T (2003) Crystallization kinetics and nucleation activity of silica nanoparticle-filled poly(ethylene 2,6-naphthalate). Polymer 44:5625–5634

    Article  Google Scholar 

  6. 6.

    Hsieh CT, Wu FL, Yang SY (2008) Superhydrophobicity from composite nano/microstructure: carbon fabrics coated with silica nanoparticles. Surf Coat Technol 202:6103–6108

    Article  Google Scholar 

  7. 7.

    Bae GY, Min BG, Jeong YG, Lee SC, Jang JH, Koo GH (2009) Superhydrophobicity of cotton fabrics treated with silica nanoparticles and water-repellent agent. J Colloid Interface Sci 337:170–175

    Article  Google Scholar 

  8. 8.

    Zhang X, Li Z, Liu K, Jiang L (2013) Bioinspired multifunctional foam with self-cleaning and oil/water separation. Adv Funct Mater 23:2881–2886

    Article  Google Scholar 

  9. 9.

    Cho SJ, Nam H, Ryu H, Lim G (2013) A rubberlike stretchable fibrous membrane with anti-wettability and gas breathability. Adv Funct Mater 23:5577–5584

    Article  Google Scholar 

  10. 10.

    Zhu J, Morgan AB, Lamelas FJ, Wilkie CA (2001) Fire properties of polystyrene–clay nanocomposites. Chem Mater 13:3774–3780

    Article  Google Scholar 

  11. 11.

    Gojny FH, Nastalczyk J, Roslaniec Z, Schulte K (2003) Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites. Chem Phys Lett 370:820–824

    Article  Google Scholar 

  12. 12.

    Tijing LD, Ruelo MTG, Amarjargal A, Pant HR, Park CH, Kim DW, Kim CS (2012) Antibacterial and superhydrophilic electrospun polyurethane nanocomposite fibers containing tourmaline nanoparticles. Chem Eng J 197:41–48

    Article  Google Scholar 

  13. 13.

    Barakat NAM, Kanjwal MA, Sheikh FA, Kim HY (2009) Spider-net within the N6, PVA and PU electrospun ultrafine fiber mats using salt addition: novel strategy in the electrospinning process. Polymer 50:4389–4396

    Article  Google Scholar 

  14. 14.

    Barakat NAM, Abadir MF, Sheikh FA, Kanjwal MA, Park SJ, Kim HY (2010) Polymeric ultrafine fibers containing solid nanoparticles prepared by electrospinning and their applications. Chem Eng J 156:487–495

    Article  Google Scholar 

  15. 15.

    Delebecq E, Pascault JP, Boutevin B, Ganachaud F (2013) On the versatility of urethane/urea bonds: reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chem Rev 113:80–118

    Article  Google Scholar 

  16. 16.

    Bayer O (1947) Das di-isocyanat-polyadditionsverfahren (Polyurethane). Angew Chem 59:257–272

  17. 17.

    Tan S, Abraham T, Ference D, Macosko CW (2011) Rigid polyurethane foams from soybean oil-based polyol. Polymer 52:2840–2846

    Article  Google Scholar 

  18. 18.

    Lyon CK, Chaudhry A, Bagby MO (1974) Rigid urethane foams from hydroxymethylated castor oil, safflower oil, oleic safflower oil, and polyol esters of castor acids. J Am Oil Chem Soc 51:331–334

    Article  Google Scholar 

  19. 19.

    Guo A, Javni I, Petrovic Z (2000) Rigid polyurethane foams based on soybean oil. J Appl Polym Sci 77:467–473

    Article  Google Scholar 

  20. 20.

    Ayres E, Orefice RL, Sousa D (2006) Influence of bentonite type in waterborne polyurethane nanocomposites mechanical properties. Macromol Symp 245:330–336

    Article  Google Scholar 

  21. 21.

    Rana S, Karak N, Cho JW, Kim YH (2008) Enhanced dispersion of carbon nanotubes in hyperbranched polyurethane and properties of nanocomposites. Nanotechnology 19:495707–495714

    Article  Google Scholar 

  22. 22.

    Cvengros J, Paligova J, Cvengrosova Z (2006) Properties of alkyl esters base on castor oil. Eur J Lipid Sci Technol 108:629–635

    Article  Google Scholar 

  23. 23.

    Lee S (2009) Multifunctionality of layered fabric systems based on electrospun polyurethane/zinc oxide nanocomposite fibers. J Appl Polym Sci 114:3652–3658

    Article  Google Scholar 

  24. 24.

    Botes M, Cloete TE (2010) The potential of ultrafine fibers and nanobiocides in water purification. Crit Rev Microbiol 36:68–81

    Article  Google Scholar 

  25. 25.

    Ogihara H, Xie J, Okagaki J, Saji T (2012) Simple method for preparing superhydrophobic paper: spray-deposited hydrophobic silica nanoparticle coatings exhibit high water-repellency and transparency. Langmuir 28:4605–4608

    Article  Google Scholar 

  26. 26.

    Chen X, Gug J, Sobkowicz MJ (2014) Role of polymer/filler interactions in the linear viscoelasticity of poly(butylenes succinate)/fumed silica nanocomposite. Compos Sci Technol 95:8–15

    Article  Google Scholar 

  27. 27.

    Park SH, Lee SG, Kim SH (2013) The use of a nanocellulose-reinforced polyacrylonitrile precursor for the production of carbon fibers. J Mater Sci 48:6952–6959. doi:10.1007/s10853-013-7503-6

    Article  Google Scholar 

  28. 28.

    Zhou C, Chu R, Wu R, Wu Q (2011) Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures. Biomacromolecules 12:2617–2625

    Article  Google Scholar 

  29. 29.

    He Q, Yuan T, Zhang X, Luo Z, Haldolaarachchige N, Sun L, Young DP, Wei S, Guo Z (2013) Magnetically soft and hard polypropylene/cobalt nanocomposites: role of maleic anhydride grafted polypropylene. Macromolecules 46:2357–2368

    Article  Google Scholar 

  30. 30.

    Sarvestani AS, Picu CR (2005) A frictional molecular model for the viscoelasticity of entangled polymer nanocomposites. Rheol Acta 45:132–141

    Article  Google Scholar 

  31. 31.

    Han CD, Kim J, Kim JK (1989) Determination of order-disorder transition temperature of block copolymers. Macromolecules 22:383–394

    Article  Google Scholar 

  32. 32.

    Zhu J, Wei S, Li Y, Sun L, Haldolaarachchige N, Young DP, Southworth C, Khasanov A, Luo Z, Guo Z (2011) Surfactant-free synthesized magnetic polypropylene nanocomposites: rheological, electrical, magnetic, and thermal properties. Macromolecules 44:4382–4391

    Article  Google Scholar 

  33. 33.

    He Q, Yuan T, Wei S, Guo Z (2013) Catalytic and synergistic effects on thermal stability and combustion behavior of polypropylene: influence of maleic anhydride grafted polypropylene stabilized cobalt nanoparticles. J Mater Chem A 1:13064–13075

    Article  Google Scholar 

  34. 34.

    Wissburn KF, Griffin AC (1982) Rheology of a thermotropic polyester in the nematic and isotropic states. J Polym Sci Polym Phys Ed 20:1835–1845

    Article  Google Scholar 

  35. 35.

    Devaux J, Godard P, Mercier JP (1982) Bisphenol-A polycarbonate-poly(butylenes terephthalate) transesterification. III. Study of model reactions. J Polym Sci Polym Phys 20:1895–1900

    Article  Google Scholar 

  36. 36.

    Park SH, Oh KW, Kim SH (2013) Reinforcement effect of cellulose nanowhisker on bio-based polyurethane. Compos Sci Technol 86:82–88

    Article  Google Scholar 

  37. 37.

    Dai X, Xu J, Guo X, Lu Y, Shen D, Zhao N, Luo X, Zhang X (2004) Study on structure and orientation action of polyurethane nanocomposites. Macromolecules 37:5615–5623

    Article  Google Scholar 

  38. 38.

    Ji L, Zhang X (2008) Ultrafine polyacrylonitrile/silica composite fibers via electrospinning. Mater Lett 62:2161–2164

    Article  Google Scholar 

  39. 39.

    Wang CB, Cooper SL (1983) Morphology and properties of segmented polyether polyurethaneureas. Macromolecules 16:775–786

    Article  Google Scholar 

  40. 40.

    Ishii D, Ying TH, Mahara A, Murakami S, Yamaoka T, Lee WK, Iwata T (2009) Invivo tissue response and degradation behavior of PLLA and stereocomplexed PLA ultrafine fibers. Biomacromolecules 10:237–242

    Article  Google Scholar 

  41. 41.

    Jung HR, Ju DH, Lee WJ, Zhang X, Kotek R (2009) Electrospun hydrophilic fumed silica/polyacrylonitrile nanofiber-based composite electrolyte membranes. Electrochim Acta 54:3630–3637

    Article  Google Scholar 

  42. 42.

    McCullen SD, Stevens DR, Roberts WA, Ojha SS, Clarke LI, Gorga RE (2007) Morphological, electrical, and mechanical characterization of electrospun ultrafine fiber mats containing multiwalled carbon nanotubes. Macromolecules 40:997–1003

    Article  Google Scholar 

  43. 43.

    Nabe A, Staude E, Belfort G (1997) Surface modification of polysulfone ultrafiltration membranes and fouling by BSA solutions. J Membr Sci 133:57–72

    Article  Google Scholar 

  44. 44.

    Shang HM, Wang Y, Takahashi K, Cao GZ, Li D, Xia YN (2005) Nanostructured superhydrophobic surfaces. J Mater Sci 40:3587–3591. doi:10.1007/s10853-005-2892-9

    Article  Google Scholar 

  45. 45.

    Gekas V, Persson KM, Wahlgren M, Sivik B (1992) Contact angles of ultrafiltration membranes and their possible correlation to membrane performance. J Membr Sci 72:293–302

    Article  Google Scholar 

  46. 46.

    Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551

    Article  Google Scholar 

  47. 47.

    Treloar LRG (1958) The physics of rubber elasticity. Clarendon Press, Oxford, UK

    Google Scholar 

  48. 48.

    Lu JW, Zhang ZP, Ren XZ, Chen YZ, Yu J, Guo ZX (2008) High-elongation fiber mats by electrospinning of polyoxymethylene. Macromolecules 41:3762–3764

    Article  Google Scholar 

  49. 49.

    Sperling LH (2006) Introduction to physical polymer science, 4th edn. Wiley, New York

    Google Scholar 

  50. 50.

    Chung SC, Hahm WG, Im SS, Oh SG (2002) Poly(ethylene terephthalate) (PET) nanocomposites filled with fumed silicas by melt compounding. Macromol Res 10:221–229

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Ministry of Trade, Industry & Energy (MOTIE) and Korea Institute for Advancement of Technology (KIAT) (N0000993).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Seong Hun Kim.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Park, S.H., Ryu, Y.S. & Kim, S.H. Effect of modified silica nanoparticle on the properties of bio-based polyurethane ultrafine fibers. J Mater Sci 50, 1760–1769 (2015). https://doi.org/10.1007/s10853-014-8739-5

Download citation

Keywords

  • Contact Angle
  • Silica Nanoparticles
  • Water Contact Angle
  • Average Fiber Diameter
  • Ultrafine Fiber