Skip to main content
Log in

Coaxial nanofibers to help achieve tunable and enhanced simultaneous magnetic-luminescent bifunctionality

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A new nanostructure of CoFe2O4@Y2O3:5 %Tb3+ magnetic-luminescent bifunctional coaxial nanofibers has been successfully fabricated via electrospinning technology using a homemade coaxial spinneret. The morphologies, structures, magnetic and luminescent properties of the final products were investigated in detail by X-ray diffractometry, scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometry, and fluorescence spectroscopy. The results show the CoFe2O4@Y2O3:5 %Tb3+ magnetic-luminescent bifunctional coaxial nanofibers simultaneously possess superior magnetic and luminescent properties due to isolating Y2O3:5 %Tb3+ luminescence center from CoFe2O4 magnetic nanofibers. Furthermore, the luminescent intensity and color of the coaxial nanofibers can be tuned via adjusting the concentrations of rare earth ions. The bifunctional magnetic-luminescent CoFe2O4@Y2O3:5 %Tb3+ coaxial nanofibers have potential applications in biomedical area, such as drug-delivery systems, cell labeling and separation, enhancement for magnetic resonance imaging, and subsequent optical identification. More importantly, the design conception and construction technology are of universal significance to fabricate other bifunctional coaxial nanofibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang W, Li ZY, Xu XR, Dong B, Zhang HN, Wang ZJ, Wang C, Baughman RH, Fang SL (2011) Au-doped polyacrylonitrile–polyaniline core–shell electrospun nanofibers having high field-effect mobilities. Small 7:597–600

    Article  Google Scholar 

  2. Ren XZ, Shi JH, Tong LZ, Li QH, Yang H (2013) Magnetic and luminescence properties of the porous CoFe2O4@Y2O3:Eu3+ nanocomposite with higher coercivity. J Nanoparticle Res 15:1738–1747

    Article  Google Scholar 

  3. Feng J, Song SY, Deng RP, Fan WQ, Zhang HJ (2010) Novel multifunctional nanocomposites: magnetic mesoporous silica nanospheres covalently bonded with near-infrared luminescent lanthanide complexes. Langmuir 26:3596–3600

    Article  Google Scholar 

  4. Jia YM, Zhou ZH, Wei YB, Wu Z, Wang HH, Chen JR, Zhang YH, Liu YS (2013) Enhanced photoluminescence of core–shell CoFe2O4/SiO2/Y2O3:Eu3+ composite by remanent magnetization. Smart Mater Struct 22:125014–125020

    Article  Google Scholar 

  5. Lu P, Zhang JL, Liu YL, Sun DH, Liu GX, Hong GY, Ni JZ (2010) Synthesis and characteristic of the Fe3O4@SiO2@Eu(DBM)3·2H2O/SiO2 luminomagnetic microspheres with core–shell structure. Talanta 83:450–457

    Article  Google Scholar 

  6. Wang W, Zou M, Chen KZ (2010) Novel Fe3O4@YPO4:Re (Re=Tb, Eu) multifunctional magnetic-fluorescent hybrid spheres for biomedical applications. Chem Commun 46:5100–5102

    Article  Google Scholar 

  7. Wang HG, Sun L, Li YP, Fei XL, Sun MD, Zhang CQ, Li YX, Yang QB (2011) Layer-by-layer assembled Fe3O4@C@CdTe core/shell microspheresas separable luminescent probe for sensitive sensing of Cu2+ ions. Langmuir 27:11609–11615

    Article  Google Scholar 

  8. Sun P, Zhang HY, Liu C, Fang J, Wang M, Chen J, Zhang JP, Mao CB, Xu SK (2010) Preparation and characterization of Fe3O4/CdTe magnetic/fluorescent nanocomposites and their applications in immuno-labeling and fluorescent imaging of cancer cells. Langmuir 26:1278–1284

    Article  Google Scholar 

  9. Grasset F, Dorson F, Molard Y, Cordier S, Demange V, Perrin C, Marchi-Artzner V, Haneda H (2008) One-pot synthesis and characterizations of bi-functional phosphor-magnetic@SiO2 nanoparticles: controlled and structured association of Mo6 cluster units and γ-Fe2O3 nanocrystals. Chem Commun 39:4729–4731

    Article  Google Scholar 

  10. Chen LN, Wang J, Li WT, Han HY (2012) Aqueous one-pot synthesis of bright and ultrasmall CdTe/CdS near-infrared emitting quantum dots and their application for tumor targeting in vivo. Chem Commun 48:4971–4973

    Article  Google Scholar 

  11. Satoh Y, Ohshio S, Saitoh H (2005) Photoluminescence spectroscopy of highly oriented Y2O3:Tb crystalline whiskers. Sci Technol Adv Mater 6:215–218

    Article  Google Scholar 

  12. Back M, Massari A, Boffelli M, Gonella F, Riello P, Cristofori D, Ricco R, Enrichi F (2012) Optical investigation of Tb3+-doped Y2O3 nanocrystals prepared by Pechini-type sol–gel process. J Nanoparticle Res 14:792–801

    Article  Google Scholar 

  13. Jiu HF, Fu YH, Zhang LX, Sun YX, Wang YZ, Han T (2012) Preparation and luminescent properties of hollow Y2O3:Tb3+ microspheres. Micro Nano Lett 7:947–950

    Article  Google Scholar 

  14. Fu JC, Zhang JL, Peng Y, Zhao JG, Tan GG, Mellors NJ, Xie EQ, Han WH (2012) Unique magnetic properties and magnetization reversal process of CoFe2O4 nanotubes fabricated by electrospinning. Nanoscale 4:3932–3936

    Article  Google Scholar 

  15. Yao XY, Kong JH, Tang XS, Zhou D, Zhao CY, Zhou R, Lu XH (2014) Facile synthesis of porous CoFe2O4 nanosheets for lithium-ion battery anodes with enhanced rate capability and cycling stability. RSC Adv 4:27488–27492

    Article  Google Scholar 

  16. Li JX, Zou MZ, Wen WW, Zhao Y, Lin YB, Chen LZ, Lai H, Guan LH, Huang ZG (2014) Spinel MFe2O4 (M=Co, Ni) nanoparticles coated on multi-walled carbon nanotubes as electrocatalysts for Li–O2 batteries. J Mater Chem A 2:10257–10262

    Article  Google Scholar 

  17. Li ZL, Zhai FQ, Wan Q, Liu ZJ, Shan JW, Li P, Volinsky AA, Qu XH (2014) Enhanced hydrogen storage properties of LiAlH4 catalyzed by CoFe2O4 nanoparticles. RSC Adv 4:18989–18997

    Article  Google Scholar 

  18. Lu XF, Wang C, Wei Y (2009) One-dimensional composite nanomaterials: synthesis by electrospinning and their applications. Small 5:2349–2370

    Article  Google Scholar 

  19. Zhang ZY, Shao CL, Sun YY, Mu JB, Zhang MY, Zhang P, Guo ZC, Liang PP, Wang CH, Liu YC (2012) Tubular nanocomposite catalysts based on size-controlled and highly dispersed silver nanoparticles assembled on electrospun silica nanotubes for catalytic reduction of 4-nitrophenol. J Mater Chem 22:1387–1395

    Article  Google Scholar 

  20. Mu JB, Shao CL, Guo ZC, Zhang ZY, Zhang MY, Zhang P, Chen B, Liu YC (2011) High photocatalytic activity of ZnO–carbon nanofiber heteroarchitectures. Appl Mater Interfaces. 3:590–596

    Article  Google Scholar 

  21. Sambaer W, Zatloukal M, Kimmer D (2011) 3D modeling of filtration process via polyurethane nanofiber based nonwoven filters prepared by electrospinning process. Chem Eng Sci 66:613–623

    Article  Google Scholar 

  22. Chen SL, Hou HQ, Harnisch F, Patil SA, Carmona-Martinez AA, Agarwal S, Zhang YY, Sinha-Ray S, Yarin AL, Greiner A, Schröder U (2011) Electrospun and solution blown three-dimensional carbon fiber nonwovens for application as electrodes in microbial fuel cells. Energy Environ Sci 4:1417–1421

    Article  Google Scholar 

  23. Song J, Chen ML, Olesen MB, Wang CX, Havelund R, Li Q, Xie EQ, Yang R, Bøggild P, Wang C, Besenbacher F, Dong MD (2011) Direct electrospinning of Ag/polyvinylpyrrolidone nanocables. Nanoscale 3:4966–4971

    Article  Google Scholar 

  24. Ma QL, Wang JX, Dong XT, Yu WS, Liu GX, Xu J (2013) Electrospinning fabrication and properties of Fe3O4/Eu(BA)3phen/PMMA magnetic-photoluminescent bifunctional composite nanoribbons. Opt Mater 35:526–530

    Article  Google Scholar 

  25. Lv N, Ma QL, Dong XT, Wang JX, Yu WS, Liu GX (2014) Parallel spinnerets electrospinning fabrication of novel flexible luminescent-electrical-magnetic trifunctional bistrand-aligned nanobundles. Chem Eng J 243:500–508

    Article  Google Scholar 

  26. Gai GQ, Wang LY, Dong XT, Zheng CM, Yu WS, Wang JX, Xiao XF (2013) Electrospinning preparation and properties of magnetic-photoluminescent bifunctional bistrand aligned composite nanofibers bundle. J Nanopart Res 15:1539–1547

    Article  Google Scholar 

  27. Lv N, Ma QL, Dong XT, Wang JX, Yu WS, Liu GX (2014) Flexible janus nanofiber: facile electrospinning construct, structure and enhanced luminescent-electrical-magnetic trifunction. ChemPlusChem 79:690–697

    Article  Google Scholar 

  28. Ma QL, Yu WS, Dong XT, Wang JX, Liu GX (2014) Janus nanobelts: fabrication, structure and enhanced magnetic-fluorescent bifunctional performance. Nanoscale 6:2945–2952

    Article  Google Scholar 

  29. Ma QL, Wang JX, Dong XT, Yu WS, Liu GX (2014) Fabrication of magnetic-fluorescent bifunctional flexible coaxial nanobelts by electrospinning using a modified coaxial spinneret. ChemPlusChem 79:290–297

    Article  Google Scholar 

  30. Ma QL, Wang JX, Dong XT, Yu WS, Liu GX, Xu J (2012) Electrospinning preparation and properties of magnetic-photoluminescent bifunctional coaxial nanofibers. J Mater Chem 22:14438–14442

    Article  Google Scholar 

  31. Xi X, Wang JX, Dong XT, Ma QL, Yu WS, Liu GX (2014) Flexible Janus nanofiber: A new tactics to realize tunable and enhanced magnetic-luminescent bifunction. Chem Eng J 254:259–267

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC 50972020, 51072026), Specialized Research Fund for the Doctoral Program of Higher Education (20102216110002, 20112216120003), the Science and Technology Development Planning Project of Jilin Province (Grant Nos. 20130101001JC, 20070402), the Science and Technology Research Project of the Education Department of Jilin Province during the eleventh five-year plan period (Under Grant No. 2010JYT01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangting Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, F., Dong, X., Wang, J. et al. Coaxial nanofibers to help achieve tunable and enhanced simultaneous magnetic-luminescent bifunctionality. J Mater Sci 50, 1679–1687 (2015). https://doi.org/10.1007/s10853-014-8729-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8729-7

Keywords

Navigation