Skip to main content
Log in

Functionalization of multi-walled carbon nanotubes (MWCNTs) with pimelic acid molecules: effect of linkage on β-crystal formation in an isotactic polypropylene (iPP) matrix

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This work proposes an alternative method for the functionalization of MWCNT with molecules of pimelic acid (PA) using an ionic bridging linkage. This bridged linkage increases the amount of β-crystal in isotactic polypropylene (iPP) matrix compared to that obtained with chelating linkages of the same molecule. Evidence of a lateral bridge between the PA and MWCNT components was obtained from infrared spectra of the functionalized carbon nanotubes (MWCNT-f). This fact was confirmed by the absence of a characteristic infrared band at 1540 cm−1, which was attributed to a particular chelating form of the PA, known as calcium pimelate (MWCNT-PS). Furthermore, an increase in the thermal stability of the attached PA due to ionic linkage was observed using differential scanning calorimetry (DSC) and thermo-gravimetric analysis. iPP nanocomposites were prepared with these MWCNT-f, yielding an improvement in the induction of β-phase within the nanocomposites; this finding was further corroborated by DSC and wide-angle X-ray diffraction analysis (WAXD). The relative content of β-crystals reaches a value as high as 85.7 % at a loading of 0.45 w/w % MWCNT-f, resulting in an increase in impact strength and the glass transition temperature (Tg), while the storage modulus decreased. In addition, the evolution of the crystallization activation energy of the resulting nanocomposites was investigated. We correlate the energy requirements of the interactions between nucleating agents and the segments of iPP. The bridged form of the molecule was associated with an increased energy barrier during the crystallization process due to both the thermodynamic instability of the β-crystal and the higher amount of induced β-crystal relative to the amount promoted by the chelated form. In this article, we demonstrate how the linkage type between MWCNT and PA components can strongly influence the ability of this organic molecule to nucleate β-crystal and can impact the crystallization behavior in iPP nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Dai X, Zhang Z, Wang C, Ding Q, Jiang J, Mai K (2013) A novel montmorillonite with ß-nucleating surface for enhancing ß-crystallization of isotactic polypropylene. Compos Part A 49:1–8

    Article  Google Scholar 

  2. Zhang Z, Wang C, Junping Z, Mai K (2012) ß-nucleation of pimelic acid supported on metal oxides in isotactic polypropylene. Polym Int 61:818–824

    Article  Google Scholar 

  3. Jiang J, Li G, Tan N, Ding Q, Mai K (2012) Crystallization and melting behavior of isotactic polypropylene composites filled by zeolite supported β-nucleator. Thermochim Acta 546:127–133

    Article  Google Scholar 

  4. Ding Q, Zhang Z, Wang C, Jiang J, Li G, Mai K (2012) Crystallization behavior and melting characteristics of wollastonite filled β–isotactic polypropylene composites. Thermochim Acta 536:47–54

    Article  Google Scholar 

  5. Wang S-W, Yang W, Bao R-Y, Wang B, Xie B-H, Yang M-B (2010) The enhanced nucleating ability of carbon nanotube-supported ß-nucleating agent in isotactic polypropylene. Colloid Polym Sci 288:681–688

    Article  Google Scholar 

  6. Bikiaris D, Vassiliou A, Chrissafis K, Paraskevopoulos KM, Jannakoudakis A, Docoslis A (2008) Effect of acid treated multi-walled carbon nanotubes on the mechanical, permeability, thermal properties and thermo-oxidative stability of isotactic polypropylene. Polym Degrad Stab 93:952–967

    Article  Google Scholar 

  7. Li X, Keliang H, Ji M, Huang Y, Zhou G (2002) Calcium dicarboxylates nucleation of β polypropylene. J Appl Polym Sci 86:633–638

    Article  Google Scholar 

  8. Li JX, Cheung WL (1997) Pimelic acid-based nucleating agents for hexagonal crystalline polypropylene. J Vinyl Addit Technol 3:151–156. doi:10.1002/vnl.10182

    Article  Google Scholar 

  9. Li JX, Cheung WL (1999) Conversion of growth and recrystallisation of β-phase in doped iPP. Polymer 40:2085–2088

    Article  Google Scholar 

  10. Zhang Z, Wang C, Meng Y, Mai K (2012) Synergistic effects of toughening of nano-CaCO and toughness of β-polypropylene. Compos Part A 43:189–197

    Article  Google Scholar 

  11. Gahleitner M, Grein C, Bernreitner K (2012) Synergistic mechanical effects of calcite micro- and nanoparticles and β-nucleation in polypropylene copolymers. Eur Polym J 48:49–59

    Article  Google Scholar 

  12. Meng M-R, Dou Q (2008) Effect of pimelic acid on the crystallization, morphology and mechanical properties of polypropylene/wollastonite composites. Mater Sci Eng, A 492:177–184

    Article  Google Scholar 

  13. Li JX, Cheung WL, Jia D (1999) A study on the heat of fusion of β-polypropylene. Polymer 40:1219–1222

    Article  Google Scholar 

  14. Zhang Y, Ouyang J, Yang H (2014) Metal oxide nanoparticles deposited onto carbon-coated halloysite nanotubes. Appl Clay Sci 95:252–259. doi:10.1016/j.clay.2014.04.019

    Article  Google Scholar 

  15. Zhao S, Xu N, Xin Z, Jiang C (2012) A novel highly efficient β-nucleating agent for isotactic polypropylene. J Appl Polym Sci 123:108–117. doi:10.1002/app.34441

    Article  Google Scholar 

  16. Varga J (2002) Β-modification of isotactic polypropylene: preparation, structure, processing, properties, and application. J Macromol Sci Part B 41:1121–1171. doi:10.1081/MB-120013089

    Article  Google Scholar 

  17. Lee C-YC, Hines AL (1987) Adsorption of glutaric, adipic, and pimelic acids on activated carbon. Chem Eng Data 32:395–397

    Article  Google Scholar 

  18. Xu J-Z, Zhong G-J, Hsiao BS et al (2014) Low-dimensional carbonaceous nanofiller induced polymer crystallization. Prog Polym Sci 39:555–593. doi:10.1016/j.progpolymsci.2013.06.005

    Article  Google Scholar 

  19. Assouline E, Lustiger A, Barber AH et al (2003) Nucleation ability of multiwall carbon nanotubes in polypropylene composites. J Polym Sci, Part B 41:520–527. doi:10.1002/polb.10394

    Article  Google Scholar 

  20. Chen Y-H, Zhong G-J, Lei J et al (2011) In situ synchrotron X-ray scattering study on isotactic polypropylene crystallization under the coexistence of shear flow and carbon nanotubes. Macromolecules 44:8080–8092. doi:10.1021/ma201688p

    Article  Google Scholar 

  21. Leelapornpisit W, Ton-That M-T, Perrin-Sarazin F et al (2005) Effect of carbon nanotubes on the crystallization and properties of polypropylene. J Polym Sci, Part B 43:2445–2453. doi:10.1002/polb.20527

    Article  Google Scholar 

  22. Miltner HE, Grossiord N, Lu K et al (2008) Isotactic polypropylene/carbon nanotube composites prepared by latex technology. thermal analysis of carbon nanotube-induced nucleation. Macromolecules 41:5753–5762. doi:10.1021/ma800643j

    Article  Google Scholar 

  23. Xu J-Z, Chen C, Wang Y et al (2011) Graphene nanosheets and shear flow induced crystallization in isotactic polypropylene nanocomposites. Macromolecules 44:2808–2818. doi:10.1021/ma1028104

    Article  Google Scholar 

  24. Bhattacharyya AR, Sreekumar T, Liu T et al (2003) Crystallization and orientation studies in polypropylene/single wall carbon nanotube composite. Polymer 44:2373–2377. doi:10.1016/S0032-3861(03)00073-9

    Article  Google Scholar 

  25. Marco C, Naffakh M, Gómez MA et al (2011) The crystallization of polypropylene in multiwall carbon nanotube-based composites. Polym Compos 32:324–333. doi:10.1002/pc.21059

    Article  Google Scholar 

  26. Grady BP, Pompeo F, Shambaugh RL, Resasco DE (2002) Nucleation of polypropylene crystallization by single-walled carbon nanotubes. J Phys Chem B 106:5852–5858. doi:10.1021/jp014622y

    Article  Google Scholar 

  27. Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Siokou A, Kallitsis I, Galiotis C, Tasis D (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon 46:833–840

    Article  Google Scholar 

  28. Somphon Weenawan, Haller Kenneth J (2013) Crystal growth and physical characterization of picolinic acid cocrystallized with dicarboxylic acids. J Cryst Growth 362:252–258

    Article  Google Scholar 

  29. Blaine RL, Kissinger HE (2012) Homer kissinger and the kissinger equation. Thermochim Acta 540:1–6

    Article  Google Scholar 

  30. Kissinger HE (1956) Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand 57:217–221

    Article  Google Scholar 

  31. Vyazovkin S (2002) Is the kissinger equation applicable to the processes that occur on cooling? Macromol Rapid Commun 23:771–775

    Article  Google Scholar 

  32. Friedman HL (2007) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C Polym Symp 6:183–195. doi:10.1002/polc.5070060121

    Article  Google Scholar 

  33. Nakamoto K (1978) Infrared and spectra of inorganic and coordination compounds. Wiley, New York

    Google Scholar 

  34. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19

    Article  Google Scholar 

  35. Hao W, Yang W, Cai H, Huang Y (2010) Non-isothermal crystallization kinetics of polypropylene/silicon nitride nanocomposites. Polym Test 29:527–533

    Article  Google Scholar 

  36. Papageorgiou GZ, Panayiotou C (2011) Crystallization and melting of biodegradable poly(propylene suberate). Thermochim Acta 523:187–199

    Article  Google Scholar 

  37. Ma W, Wang X, Zhang J (2011) Crystallization kinetics of poly(vinylidene fluoride)/MMT, SiO2, CaCO3 or PTFE nanocomposite by differential scanning calorimeter. J Therm Anal Calorim 103:319–327

    Article  Google Scholar 

  38. Labour T, Gauthier C, Séguéla R, Vigier G, Bomal Y, Orange G (2001) Influence of the β crystalline phase on the mechanical properties of unfilled and CaCO3-filled polypropylene. I. Structural and mechanical characterisation. Polymer 42:7127–7135

    Article  Google Scholar 

  39. Jacoby P, Bersted BH, Kissel WJ, Smith E (1986) Studies on the β-crystalline form of isotactic polypropylene. J Polym Sci B 24:461–491

    Article  Google Scholar 

  40. Tjong SC, Shen SJ, Li RKY (1996) Mechanical behavior of injection molded β-crystalline phase polypropylene. Polym Eng Sci 36:100–105

    Article  Google Scholar 

Download references

Acknowledgements

This project was financially supported by CONACYT (Project Nos. 78904 and 129962) and DGEST (Project No. 5207.14-P). The authors express their gratitude to Ch. E. Ana Lourdes Rodríguez Villanueva for experimental assistance in the WAXD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Almendarez-Camarillo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10853_2014_8706_MOESM1_ESM.pdf

Online Resource Caption ESM_1. DSC curves (left) and X-ray diffraction patterns (right) of iPP nanocomposite, filled with 0.45 % w/w of MWCNT-COOH. Supplementary material 1 (PDF 209 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez-Calderon, J.A., Castrejon-Gonzalez, E.O., Medellin-Rodriguez, F.J. et al. Functionalization of multi-walled carbon nanotubes (MWCNTs) with pimelic acid molecules: effect of linkage on β-crystal formation in an isotactic polypropylene (iPP) matrix. J Mater Sci 50, 1457–1468 (2015). https://doi.org/10.1007/s10853-014-8706-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8706-1

Keywords

Navigation