Journal of Materials Science

, Volume 50, Issue 3, pp 1412–1426 | Cite as

Phase transformation kinetics during continuous heating of a β-quenched Ti–10V–2Fe–3Al alloy

  • Pere Barriobero-VilaEmail author
  • Guillermo Requena
  • Fernando Warchomicka
  • Andreas Stark
  • Norbert Schell
  • Thomas Buslaps
Original Paper


The effect of heating rate on the phase transformation kinetics of a Ti–10V–2Fe–3Al metastable β titanium alloy quenched from the β field is investigated by fast in situ high energy synchrotron X-ray diffraction and differential scanning calorimetry. The initial microstructure is formed by α″ martensite and fine ωath particles distributed in the retained β-phase matrix. The phase transformation sequence varies with the heating rate as revealed by analysis of the continuous evolution of crystallographic relationships between phases. At low temperatures an athermal reversion of α″ martensite into β takes place. This reversion occurs to a larger extent with increasing heating rate. On the other hand, diffusion–driven precipitation and growth of the ω phase is observed for lower heating rates accompanying the reverse martensitic transformation. Furthermore, the results show that the stable α phase can form through three different paths: (a) from the ω phase, (b) from α″ martensite, and (c) from the β phase.


Martensite Differential Scanning Calorimetry Titanium Alloy Differential Scanning Calorimetry Curve Shape Memory Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the COMET-Program of the Austrian Research Promotion Agency (FFG) and the Province of Upper Austria (LOÖ), Grant No. 820492 for financial support. The European Synchrotron Radiation Facility (ESRF) and the Deutsches Elektronen-Synchrotron (DESY) are acknowledged for the provision of synchrotron radiation facilities in the framework of the MA1268 and I-20100329 EC proposals, respectively. The University Service for Transmission Electron Microscopy (USTEM) of the Vienna University of Technology is acknowledged for the provision of the transmission electronic microscope. Böhler Schmiedetechnik GmbH & Co KG is also acknowledged for the provision materials. The authors would like to thank Dr. A. Rhys Williams for proof-reading the manuscript.

Supplementary material

Online Resource 1: Video sequence of a color-coded 2D plot corresponding to a selected portion of complete Debye–Scherrer rings converted into Cartesian coordinates. The evolution of the Bragg reflections is shown as a function of temperature during heating at 5 °C min-1 (MPG 8174 kb)

Online Resource 2: Video sequence of a color-coded 2D plot corresponding to a selected portion of complete Debye–Scherrer rings converted into Cartesian coordinates. The evolution of the Bragg reflections is shown as a function of temperature during heating at 20 °C min-1 (MPG 4964 kb)

Online Resource 3: Video sequence of a color-coded 2D plot corresponding to a selected portion of complete Debye–Scherrer rings converted into Cartesian coordinates. The evolution of the Bragg reflections is shown as a function of temperature during heating at 50 °C min-1 (MPG 10122 kb)

Online Resource 4: 3D animation of the lattice correspondence observed between the a? and a phases (MPG 17818 kb)


  1. 1.
    Banerjee D, Williams JC (2013) Perspectives on titanium science and technology. Acta Mater 61:844–879CrossRefGoogle Scholar
  2. 2.
    Boyer RR, Briggs RD (2005) The use of titanium alloys in the aerospace industry. J Mater Eng Perform 14:681–685CrossRefGoogle Scholar
  3. 3.
    Maeshima T, Nishida M (2004) Shape memory and mechanical properties of biomedical Ti–Sc–Mo alloys. Mater Trans 45:1101–1105CrossRefGoogle Scholar
  4. 4.
    Duerig TW, Williams JC (1984) Microstructure and properties of beta titanium alloys. In: Boyer RR, Rosenberg HW (eds) Beta titanium alloys in the 1980’s. The Metallurgical Society of AIME, Atlanta, pp 16–69Google Scholar
  5. 5.
    Miyazaki S, Sachdeva RL (2009) Shape memory effect and superelasticity in Ti–Ni alloys. In: Yoneyama T, Miyazaki S (eds) Shape memory alloys for biomedical applications. Woodhead, Cambridge, pp 3–18CrossRefGoogle Scholar
  6. 6.
    Duerig TW, Albrecht J, Richter D, Fischer P (1982) Formation and reversion of stress induced martensite in Ti–10V–2Fe–3Al. Acta Metall 30:2161–2172CrossRefGoogle Scholar
  7. 7.
    Ohmori Y, Ogo T, Nakai K, Kobayashi S (2001) Effects of ω-phase precipitation on β → α, α″ transformations in a metastable β titanium alloy. Mater Sci Eng A 312:182–188CrossRefGoogle Scholar
  8. 8.
    Ivasishin OM, Markovsky PE, Semiatin SL, Ward CH (2005) Aging of coarse- and fine-grained β titanium alloys. Mater Sci Eng A 405:296–305CrossRefGoogle Scholar
  9. 9.
    Nag S, Banerjee R, Srinivasan R, Hwang JY, Harper M, Fraser HL (2009) ω-Assisted nucleation and growth of α precipitates in the Ti–5Al–5Mo–5V–3Cr–0.5Fe β titanium alloy. Acta Mater 57:2136–2147CrossRefGoogle Scholar
  10. 10.
    Bein S, Béchet J (1996) Phase transformation kinetics and mechanisms in titanium alloys Ti-, β-CEZ and Ti-10.2.3. J Phys IV 6:99–108Google Scholar
  11. 11.
    Malinov S, Sha W, Markovsky P (2003) Experimental study and computer modeling of the β → α+β phase transformation in β21s alloy at isothermal conditions. J Alloys Compd 348:110–118CrossRefGoogle Scholar
  12. 12.
    Bruneseaux F, Geandier G, Gautier E, Appolaire B, Dehmas M, Boulet P (2007) In situ characterization of the transformation sequences of Ti17 alloy by high energy X-ray diffraction: Influence of the thermal path. In: Niinomi M, Akiyama S, Hagiwara M, Ikeda M, Maruyama K (eds) Ti-2007 science and technology. The Japan Institute of Metals, Sendai, pp 563–566Google Scholar
  13. 13.
    Contrepois Q, Carton M, Lecomte-Beckers J (2011) Characterization of the β phase decomposition in Ti–5Al–5Mo–5V–3Cr at slow heating rates. Open J Met 1:1–11CrossRefGoogle Scholar
  14. 14.
    Carton M, Jacques P, Clément N, Lecomte-Beckers J (2007) Study of transformations and microstructural modifications in Ti-LCB and Ti-555 alloys using differential scanning calorimetry. In: Niinomi M, Akiyama S, Hagiwara M, Ikeda M, Maruyama K (eds) Ti-2007 science and technology. The Japan Institute of Metals, Sendai, pp 491–494Google Scholar
  15. 15.
    Liss KD, Bartels A, Schreyer A, Clemens H (2003) High-energy X-rays: a tool for advanced bulk investigations in materials science and physics. Texture Microstruct 35:219–252CrossRefGoogle Scholar
  16. 16.
    Aeby-Gautier E, Bruneseaux F, Teixeira J, Appolaire B, Geandier G, Denis S (2007) Microstructural formation in Ti alloys: in-situ characterization of phase transformation kinetics. JOM 59:54–58CrossRefGoogle Scholar
  17. 17.
    Jones NG, Dashwood RJ, Jackson M, Dye D (2009) β phase decomposition in Ti–5Al–5Mo–5V–3Cr. Acta Mater 57:3830–3839CrossRefGoogle Scholar
  18. 18.
    Wollmann M, Kiese J, Wagner L (2011) Properties and applications of titanium alloys in transport. In: Zhou L, Chang H, Lu Y, Xu D (eds) Ti-2011. Science Press Beijing, Beijing, pp 837–844Google Scholar
  19. 19.
    Eylon D, Vassel A, Combres Y, Boyer RR, Bania PJ, Schutz RW (1994) Issues in the development of beta titanium alloys. JOM 46:14–15CrossRefGoogle Scholar
  20. 20.
    Boyer R, Welsch G, Collings EW (1994) Material properties handbook: titanium alloys, 4th edn. ASM International, OhioGoogle Scholar
  21. 21.
    Lin W, Dalmazzone D, Fürst W, Delahaye A, Fournaison L, Clain P (2013) Acurate DSC measurement of the phase transition temperature in the TBPB–water system. J Chem Thermodyn 61:132–137CrossRefGoogle Scholar
  22. 22.
    Pompe G, Schulze U, Hu J, Pionteck J, Höhne GWH (1999) Separation of glass transition and melting polyethylene/poly(butyl-methacrylate-co-methyl-methacrylate) interpenetrating polymer networks in TMDSC and DSC curves. Thermochim Acta 337:179–186CrossRefGoogle Scholar
  23. 23.
    ID15 - High Energy Scattering Beamline, ESRF (1999). Accessed 09 July 2014
  24. 24.
    P07 - The High Energy Materials Science Beamline, DESY (2010). Accessed 09 July 2014
  25. 25.
    Staron P, Fischer T, Lippmann T, Stark A, Daneshpour S, Schnubel D, Uhlmann E, Gerstenberger R, Camin B, Reimers W, Eidenberger E, Clemens H, Huber N, Schreyer A (2011) In situ experiments with synchrotron high-energy X-rays and neutrons. Adv Eng Mater 13:658–663CrossRefGoogle Scholar
  26. 26.
    Hammersley A, Svensson SO, Thompson A (1994) Calibration and correction of spatial distortions in 2D detector systems. Nucl Instrum Methods Phys Res A 346:312–321CrossRefGoogle Scholar
  27. 27.
    Abramoff MD, Magalhães PJ, Ram SJ (2004) Image processing with imageJ. Biophoton Int 11:36–41Google Scholar
  28. 28.
    Lutterotti L, Matthies S, Wenk HR, Schultz AJ, Richardson J (1997) Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. J Appl Phys 81:594–600CrossRefGoogle Scholar
  29. 29.
    Cai MH, Lee CY, Kang S, Lee YK (2011) Fine-grained structure fabricated by strain-induced martensite and its reverse transformations in a metastable β titanium alloy. Scripta Mater 64:1098–1101CrossRefGoogle Scholar
  30. 30.
    Banerjee S, Mukhopadhyay P (2007) Phase transformations: examples from titanium and zirconium alloys, 1st edn. Elsevier, OxfordGoogle Scholar
  31. 31.
    Willams JC, Fontaine D, Paton NE (1973) The ω-phase as an example of an unusual shear transformation. Metall Trans 4:2701–2708CrossRefGoogle Scholar
  32. 32.
    Sass SL (1972) The structure and decomposition of Zr and Ti B.C.C. solid solutions. J Less Common Met 28:157–173CrossRefGoogle Scholar
  33. 33.
    Li SJ, Cui TC, Hao YL, Yang R (2008) Fatigue properties of a metastable β-type titanium alloy with reversible phase transformation. Acta Biomater 4:305–317CrossRefGoogle Scholar
  34. 34.
    Dutta J, Ananthakrishna G, Banerjee S (2012) On the athermal nature of the β to ω transformation. Acta Mater 60:556–564CrossRefGoogle Scholar
  35. 35.
    Mantani Y, Takemoto Y, Hida M, Sakakibara A, Tajima M (2004) Phase transformation of a α″ martensite structure by aging in Ti-8 mass%Mo alloy. Mater Trans 45:1629–1634CrossRefGoogle Scholar
  36. 36.
    Popov AA, Illarionov AG, Grib SV, Elkina AO (2011) Formation conditions of omega phase in the titanium alloys after quenching. In: Zhou L, Chang H, Lu Y, Xu D (eds) Ti-2011. Science Press Beijing, Beijing, pp 694–697Google Scholar
  37. 37.
    Bönisch M, Calin M, Waitz T, Panigrahi A, Zehetbauer M, Gebert A, Skrotzki W, Eckert J (2013) Thermal stability and phase transformations of martensitic Ti–Nb alloys. Sci Technol Adv Mater 14:1–9CrossRefGoogle Scholar
  38. 38.
    Liss KD, Stark A, Bartels A, Clemens H, Buslaps T, Phelan D, Yeoh LA (2008) Directional atomic rearrangements during transformations between the α- and γ-phases in titanium aluminides. Adv Eng Mater 10:389–392CrossRefGoogle Scholar
  39. 39.
    Ramsteiner IB, Shchyglo O, Mezger M, Udyansky A, Bugaev V, Schöder S, Reichert H, Dosch H (2008) Omega-like diffuse X-ray scattering in Ti–V caused by static lattice distortions. Acta Mater 56:1298–1305CrossRefGoogle Scholar
  40. 40.
    Settefrati A, Dehmas M, Geandier G, Denand B, Aeby-Gautier E, Appolaire B, Khelifati G, Delfosse J (2011) Precipitation sequences in beta metastable phase of Ti-5553 alloy during ageing. In: Zhou L, Chang H, Lu Y, Xu D (eds) Ti-2011. Science Press Beijing, Beijing, pp 468–472Google Scholar
  41. 41.
    Basak CB, Neogy S, Srivastava D, Dey GK, Banerjee S (2011) Disordered bcc γ-phase to δ-phase transformation in Zr-rich U-Zr alloy. Philos Mag 91:3290–3306CrossRefGoogle Scholar
  42. 42.
    Banerjee D, Muraleedharan K, Strudel JL (1998) Substructure in titanium alloy martensite. Philos Mag A 77:299–323CrossRefGoogle Scholar
  43. 43.
    Obbard EG, Hao YL, Talling RJ, Li SJ, Zhang YW, Dye D, Yang R (2011) The effect of oxygen on α″ martensite and superelasticity in Ti–24Nb–4Zr–8Sn. Acta Mater 59:112–125CrossRefGoogle Scholar
  44. 44.
    Banumathy S, Mandal RK, Singh AK (2009) Structure of orthorhombic martensitic phase in binary Ti–Nb alloys. J Appl Phys 106:093518.1–093518.6CrossRefGoogle Scholar
  45. 45.
    Brown ARG, Clark D, Eastabrook J, Jepson KS (1964) The titanium–niobium system. Nature 201:914–915CrossRefGoogle Scholar
  46. 46.
    Aurelio G, Fernández-Guillermet A, Cuello GJ, Campo J (2002) Metastable phases in the Ti–V system: part I. Neutron diffraction study and assessment of structural properties. Metall Mater Trans A 33:1307–1317CrossRefGoogle Scholar
  47. 47.
    Kim HY, Ikehara Y, Kim JI, Hosoda H, Miyazaki S (2006) Martensitic transformation, shape memory effect and superelasticity of Ti–Nb binary alloys. Acta Mater 54:2419–2429CrossRefGoogle Scholar
  48. 48.
    Williams JC, Hickman BS, Marcus HL (1971) The effect of omega phase on the mechanical properties of titanium alloys. Metall Trans 2:1913–1919Google Scholar
  49. 49.
    Šmilauerová J, Janeček M, Harcuba P, Stráský J (2013) Aging study of TIMETAL LCB titanium alloy. Proc. Met.. Accessed 09 July 2014
  50. 50.
    Hickman BS (1969) The formation of omega phase in titanium and zirconium alloys: a review. J Mater Sci 4:554–563. doi: 10.1007/BF00550217 CrossRefGoogle Scholar
  51. 51.
    Devaraj A, Nag S, Srinivasan R, Williams REA, Banerjee S, Banerjee R, Fraser HL (2012) Experimental evidence of concurrent compositional and structural instabilities leading to ω precipitation in titanium–molybdenum alloys. Acta Mater 60:596–609CrossRefGoogle Scholar
  52. 52.
    Akahama Y, Kawamura H, Bihan TL (2001) New δ (distorted-bcc) titanium to 220 GPa. Phys Rev Lett 87:275503.1–275503.4CrossRefGoogle Scholar
  53. 53.
    Vohra YK, Spencer PT (2001) Novel gamma-phase of titanium metal at megabar pressures. Phys Rev Lett 86:3068–3071CrossRefGoogle Scholar
  54. 54.
    Duerig TW, Middleton RM, Terlinde GT, Williams JC (1980) Stress assisted transformation in Ti–10V–2Fe–3Al. In: Kimura H, Izuma O (eds) Titanium ‘80 science and technology. Metallurgical Society of AIME, Kyoto, pp 1503–1508Google Scholar
  55. 55.
    Davis R, Flower HM, West DRF (1979) Martensitic transformations in Ti–Mo alloys. J Mater Sci 14:712–722. doi: 10.1007/BF00772735 Google Scholar
  56. 56.
    Bagariatskii IA, Nosova GI, Tagunova TV (1958) Factors in the formation of metastable phases in titanium-base alloys. Sov Phys Dokl 3:1014–1018Google Scholar
  57. 57.
    Settefrati A, Aeby-Gautier E, Appolaire B, Dehmas M, Geandier G, Khelifati G (2013) Low temperature transformation in the β-metastable Ti-5553 alloy. Mater Sci Forum 738–739:97–102CrossRefGoogle Scholar
  58. 58.
    Malinov S, Sha W, Guo Z, Tang CC, Long AE (2002) Synchrotron X-ray diffraction study of the phase transformations in titanium alloys. Mater Charact 48:279–295CrossRefGoogle Scholar
  59. 59.
    Duerig TW, Terlinde GT, Williams JC (1980) Phase transformations and tensile properties of Ti–10V–2Fe–3Al. Metall Trans A 11:1987–1998CrossRefGoogle Scholar
  60. 60.
    Ohmori Y, Natsui H, Nakai K, Ohtsubo H (1998) Effects of ω phase formation on decomposition of α″/β duplex phase structure in a metastable β Ti alloy. Mater Trans JIM 39:40–48CrossRefGoogle Scholar
  61. 61.
    Tang B, Kou HC, Wang YH, Zhu ZS, Zhang FS, Li JS (2012) Kinetics of orthorhombic martensite decomposition in TC21 alloy under isothermal conditions. J Mater Sci 47:521–529. doi: 10.1007/s10853-011-5829-5 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Pere Barriobero-Vila
    • 1
    Email author
  • Guillermo Requena
    • 1
  • Fernando Warchomicka
    • 1
    • 2
  • Andreas Stark
    • 3
  • Norbert Schell
    • 3
  • Thomas Buslaps
    • 4
  1. 1.Institute of Materials Science and TechnologyVienna University of TechnologyViennaAustria
  2. 2.Institute for Materials Science and WeldingGraz University of TechnologyGrazAustria
  3. 3.Helmholtz-Zentrum GeesthachtCentre for Materials and Coastal ResearchGeesthachtGermany
  4. 4.ID15, European Synchrotron Radiation FacilityGrenobleFrance

Personalised recommendations