Journal of Materials Science

, Volume 50, Issue 3, pp 1267–1276 | Cite as

Nanostructure and luminescence properties of amorphous and crystalline ytterbium–yttrium oxide thin films obtained with pulsed reactive crossed-beam deposition

  • Jean-François Bisson
  • Gilles Patriarche
  • Tomy Marest
  • Jacques Thibodeau
Original Paper

Abstract

The nanostructure of ytterbium-doped yttrium oxide thin films, produced using pulsed laser ablation of a Yb–Y alloy target together with a pulsed flow of oxygen, is examined using X-ray and electron diffraction as well as Scanning Transmission Electron Microscopy (STEM). As-produced coatings are amorphous and become nanocrystalline cubic yttria after annealing. STEM images taken in the Bright-Field (BF) and in the High-Angle Annular Dark-Field (HAADF) modes reveal different aspects of the nanostructure of yttria. Simulations of the bixbyite structure of yttria indicate that dark spots arranged in a honeycomb structure seen in the STEM-BF mode arise from the absence of oxygen ions at regular crystallographic locations, while those seen on the HAADF images arise from cationic distortions. These results spectacularly exemplify the complementarity of the BF and HAADF imaging modes. Luminescence properties of amorphous and crystalline samples are also studied. Excitation of Yb3+ ions with an infrared (IR) laser diode produce both IR luminescence from excited Yb3+ and visible luminescence from holmium impurities present in the starting materials. Yb3+ emission bands become increasingly narrower as crystallization takes place, testifying for the transition from inhomogeneous to homogeneous crystal field. Increased lifetime and more intense luminescence observed after annealing imply reduced nonradiative relaxation and higher quantum efficiency.

Keywords

Y2O3 Scan Transmission Electron Microscopy Dark Spot Upconversion Luminescence Scan Transmission Electron Microscopy Image 

Notes

Acknowledgements

We thank David Troadec, IEMN-CNRS, France for the sample preparation, Pierre St-Onge, Université de Moncton, for technical assistance, and Ralf Bruening, Mount Allison University, for X-ray diffraction data and useful discussions. This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

References

  1. 1.
    Peters R, Kränkel C, Fredrich-Thornton ST, Beil K, Petermann K, Huber G, Heckl OH, Baer CRE, Saraceno CJ, Südmeyer T, Keller U (2011) Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides. Appl Phys B 102:509–514CrossRefGoogle Scholar
  2. 2.
    Fornasiero L, Mix E, Peters V, Petermann K, Huber G (1999) New oxide crystals for solid state lasers. Cryst Res Technol 34(2):255–260CrossRefGoogle Scholar
  3. 3.
    Riseberg LA, Weber MJ (1976) Relaxation phenomena in rare-earth luminescence. In: Wolf E (ed) Progress in optics XIV. North-Holland, Amsterdam, pp 89–159Google Scholar
  4. 4.
    Weber MJ (1968) Radiative and multiphonon relaxation of rare-earth ions in Y2O3. Phys Rev 171(2):283–291CrossRefGoogle Scholar
  5. 5.
    Riseberg LA, Moos HW (1968) Multiphonon orbit-lattice relaxation of excited states of rare-earth ions in crystals. Phys Rev 174:429–438CrossRefGoogle Scholar
  6. 6.
    Krupke WF (2000) Ytterbium solid-state lasers: The first decade. IEEE J Sel Top Quantum Electron 6(6):1287–1296CrossRefGoogle Scholar
  7. 7.
    Coutures JP, Rand MH (1989) Refractory oxides: part II lanthanoid sesquioxides. Pure Appl Chem 61(8):1461–1482CrossRefGoogle Scholar
  8. 8.
    Coutures JP, Rouanet A, Verges R, Foex M (1976) Étude à haute température des systèmes formés par le sesquioxyde de lanthane et les sesquioxydes de lanthanides. I. Diagrammes de phase (1400 °C < T<T liquide). J Solid-State Chem 17:171–182 (In French)CrossRefGoogle Scholar
  9. 9.
    Boulesteix C, Caro PE, Gasgnier M, Henry la Blanchetais C, Pardo B, Schiffmacher G (1974) La structure cubique C des sesquioxydes de terres rares. Phys Stat Solidi (a) 23:597–604 (In French)CrossRefGoogle Scholar
  10. 10.
    Ueda K, Bisson JF, Yagi H, Takaichi K, Shirakawa A, Yanagitani T, Kaminskii A (2005) Scalable ceramic lasers. Laser Phys 15(7):927–938Google Scholar
  11. 11.
    Ikesue A, Aung YL (2008) Ceramic laser materials. Nature Photon. 2(12):721–727CrossRefGoogle Scholar
  12. 12.
    Bisson JF, Yagi H, Kaminskii A, Barabanenkov YN, Ueda K (2007) Influence of the grain boundaries on the heat transfer in laser ceramics. Opt Rev 14(1):1–13CrossRefGoogle Scholar
  13. 13.
    Sanghera J, Bayya S, Villa Lobos G, Kim W et al (2011) Transparent ceramics for high-energy laser systems. Opt Mater 33(3):511–518CrossRefGoogle Scholar
  14. 14.
    Pons-Y-Moll O, Perrière J, Million E, Defourneau RM, Defourneau D, Vincent B, Essahlaoui A, Boudrioua A (2002) Structural and optical properties of rare-earth-doped Y2O3 waveguides grown by pulsed-laser deposition. J Appl Phys 92(9):4885–4890CrossRefGoogle Scholar
  15. 15.
    Kühn H, Heinrich S, Kahn A, Petermann K, Bradley JDB, Wörhoff K, Pollnau M, Huber G (2009) Monocrystalline Yb3+:(Gd, Lu)2O3 channel waveguide laser at 976.8 nm. Opt Lett 34(18):2718–2720CrossRefGoogle Scholar
  16. 16.
    Robin IC, Kumaran R, Penson S, Webster SE, Tiedje T, Oleinik A (2008) Structure and photoluminescence of Nd: Y2O3 grown by molecular beam epitaxy. Opt Mater 30:835–838CrossRefGoogle Scholar
  17. 17.
    Li W, Webster SE, Kumaran R, Penson S, Tiedje T (2010) Optical wave propagation in epitaxial Nd :Y2O3 planar waveguides. Appl Optics 49(4):586–591CrossRefGoogle Scholar
  18. 18.
    Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature (London) 318:162–163CrossRefGoogle Scholar
  19. 19.
    Perrière J, Millon E, Chamarro M, Morcrette M, Andreazza C (2001) Formation of GaAs nanocrystals by laser ablation. Appl Phys Lett 78(19):2949–2951CrossRefGoogle Scholar
  20. 20.
    Gupta A, Hussey BW (1991) Laser deposition of YBa2Cu3O7-delta films using a pulsed oxygen source. Appl Phys Lett 58:1211–1213CrossRefGoogle Scholar
  21. 21.
    Willmott PR, Timm R, Felder P, Huber JR (1994) Growth of CuO films by pulsed lase deposition in conjunction with a pulsed oxidation source. J Appl Phys 76(5):2657–2661CrossRefGoogle Scholar
  22. 22.
    Wang CH, Jackson TJ, Somekh RE, Leake JA, Evetts JE (1997) Epitaxial growth of oxides on metals using pulsed laser deposition with a pulsed oxygen source. Vacuum 48(11):887–889CrossRefGoogle Scholar
  23. 23.
    Anfappane S, Selvi NR, Kulkarni GU (2009) ZnO(101) films by pulsed reactive crossed-beam ablation. Bull Mater Sci 32(3):253–258CrossRefGoogle Scholar
  24. 24.
    Pantzas K, Patriarche G, Troadec D, Gautier S, Moudakir T, Suresh S, Largeau L, Mauguin O, Voss PL, Ougazzaden (2012) A nanometer-scale, quantitative composition mappings of InGaN layers from a combination of scanning transmission electron microscopy an energy dispersive X-ray spectroscopy. Nanotechnology 23:455707CrossRefGoogle Scholar
  25. 25.
    Xin HL, Muller D (2009) Aberration-corrected ADF-STEM depth sectioning and prospects for reliable 3D imaging in STEM. J Electron Microsc 58:157–165CrossRefGoogle Scholar
  26. 26.
    Sumida DS, Fan TY (1994) Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media. Opt Lett 19:1343–1345CrossRefGoogle Scholar
  27. 27.
    Kühn H, Fredrich-Thornton ST, Kränkel C, Peters R, Petermann K (2007) Model for the calculation of radiation trapping and description of the pinhole method. Opt Lett 32(13):1908–1910CrossRefGoogle Scholar
  28. 28.
    Toci G (2012) Lifetime measurements with the pinhole method in presence of radiation trapping : I -theoretical model. Appl Phys B 106:63–71CrossRefGoogle Scholar
  29. 29.
    Joint Committee on Powder Diffraction Standards (JCPDS) Files, No. 41-1105Google Scholar
  30. 30.
    Pardo B, Zogheib H (1974) Théorie dynamique des taches interdites apparaissant sur les diagrammes de diffraction électronique. Phys Stat Solidi (a) 24:91–97 (In French)CrossRefGoogle Scholar
  31. 31.
    Hanic F, Hartmanova M, Knab GG, Urusovskaya AA, Bagdasarov KS (1984) Real structure of undoped Y2O3 single crystals. Acta Cryst B40:76–82CrossRefGoogle Scholar
  32. 32.
    Auzel F (2004) Upconversion and anti-Stokes processes with f and d ions in solids. Chem Rev 104:139–173CrossRefGoogle Scholar
  33. 33.
    Boyer JC, Vetrone F, Campobianco JA, Speghini A, Bettinelli M (2004) Yb3+ ion as a sensitizer for the upconversion luminescence in nanocrystalline Gd3Ga5O12:Ho3+. Chem Phys Lett 390:403–407CrossRefGoogle Scholar
  34. 34.
    Zhang J, Wang S, An L, Liu M, Chen L (2005) Infrared to visible upconversion luminescence in Yb3+, Ho3+:Y2O3 nanocrystalline powders. Mater Sci Forum 492–493:95–100CrossRefGoogle Scholar
  35. 35.
    Zhang J, Wang S, Rong T, Chen L (2004) Upconversion luminescence in Er3+ doped and Yb3+/Er3+ codoped yttria nanocrystalline powders. J Am Ceram Soc 87(6):1072–1075CrossRefGoogle Scholar
  36. 36.
    Dikovska AOG, Atanasov PA, Jiménez de Castro M, Perea A, Gonzalo J, Afonso CN, Garcia Lopez J (2006) Optically active Er3+–Yb3+ codoped Y2O3 films produced by pulsed laser deposition. Thin Solid Films 500:336–340CrossRefGoogle Scholar
  37. 37.
    Bisson JF, Kouznetsov D, Ueda K, Fredrich-Thornton ST, Petermann K, Huber G (2007) Switching of emissivity and photoconductivity in highly doped Yb3+:Y2O3 and Lu2O3 ceramics. Appl Phys Lett 90(20):201901CrossRefGoogle Scholar
  38. 38.
    Petermann K, Huber G, Fornasiero L, Kuch S, Mix E, Peters V, Basun SA (2000) Rare-earth doped sesquioxides. J Lumin 87–89:973–975CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jean-François Bisson
    • 1
  • Gilles Patriarche
    • 2
  • Tomy Marest
    • 3
  • Jacques Thibodeau
    • 1
  1. 1.Département de physique et astronomieUniversité de MonctonMonctonCanada
  2. 2.Laboratoire de photonique et de nanostructuresCentre national de la recherche scientifique - UPR20MarcoussisFrance
  3. 3.Université Lille 1Villeneuve d’Ascq CedexFrance

Personalised recommendations