Skip to main content

Advertisement

Log in

Optimizing nano-dynamic mechanical analysis for high-resolution, elastic modulus mapping in organic-rich shales

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An elastic modulus mapping technique based on spatially continuous dynamic nanoindentation is applied to map microscale variations in a fine-grained, kerogen-rich shale consisting of inorganic minerals with an interpenetrating network of microscale pores filled with organic matter. Advantages and limitations of the application of this technique to shales are explored through varying sample preparation and scanning procedures. Filtering techniques are developed to remove data that are negatively impacted by topography and other issues inherent to the mapping technique. As a result, spatial variations of elastic modulus in kerogen-rich regions are seen at substantially higher resolution than has previously been reported. Spatial resolution and continuous mapping across high stiffness-contrast material boundaries are further improved with stringent sample preparation and the use of a sharp tip. Typical modulus values measured by this technique include approximately 10 GPa for kerogen, 15–45 GPa for clay depending on the morphology and orientation, and 50–70 GPa for quartz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. FEI Helios NanoLab 650, Hillsboro, OR.

References

  1. Ahmadov R, Vanorio T, Mavko G (2009) Confocal laser scanning and atomic-force microscopy in estimation of elastic properties of the organic-rich Bazhenov Formation. Rock Phys 1:18–23. doi:10.1190/1.3064141

    Google Scholar 

  2. Bobko C, Ulm F-J (2008) The nano-mechanical morphology of shale. Mech Mater 40:318–337. doi:10.1016/j.mechmat.2007.09.006

    Article  Google Scholar 

  3. Zeszotarski JC, Chromik RR, Vinci RP, Messmer MC, Michels R, Larsen JW (2004) Imaging and mechanical property measurements of kerogen via nanoindentation. Geochim Cosmochim Acta 68:4113–4119. doi:10.1016/j.gca.2003.11.031

    Article  Google Scholar 

  4. Vernik L, Nur A (1992) Ultrasonic velocity and anisotropy of hydrocarbon source rocks. Geophysics 57:727–735

    Article  Google Scholar 

  5. Prasad M, Mba K, Sadler T, Batzle M (2011) Maturity and impedance analysis of organic-rich shales. SPE Reservoir Eval Eng 14:533–543. doi:10.2118/123531-PA

    Article  Google Scholar 

  6. Vega B, Dutta A, Kovscek AR (2014) CT imaging of low-permeability, dual-porosity systems using high x-ray contrast gas. Transport Porous Med 101:81–97. doi:10.1007/s11242-013-0232-0

    Article  Google Scholar 

  7. Kopycinska-Müller M, Prasad M, Rabe U, Arnold W (2007) Acoust ImagSpringer

  8. Prasad M, Kopycinska M, Rabe U, Arnold W (2002) Measurement of Young’s modulus of clay minerals using atomic force acoustic microscopy. Geophys Res Lett 29:13-1–13-4. doi:10.1029/2001GL014054

    Article  Google Scholar 

  9. Ulm F-J, Abousleiman Y (2006) The nanogranular nature of shale. Acta Geotech 1:77–88. doi:10.1007/s11440-006-0009-5

    Article  Google Scholar 

  10. Zargari S, Prasad M, Mba KC, Mattson ED (2013) Organic maturity, elastic properties, and textural characteristics of self resourcing reservoirs. Geophysics 78:D223–D235. doi:10.1190/geo2012-0431.1

    Article  Google Scholar 

  11. Zhu W, Hughes JJ, Bicanic N, Pearce CJ (2007) Nanoindentation mapping of mechanical properties of cement paste and natural rocks. Mater Charact 58:1189–1198. doi:10.1016/j.matchar.2007.05.018

    Article  Google Scholar 

  12. Constantinides G, Ravi Chandran K, Ulm F-J, Van Vliet K (2006) Grid indentation analysis of composite microstructure and mechanics: principles and validation. Mater Sci Eng A-Struct 430:189–202. doi:10.1016/j.msea.2006.05.125

    Article  Google Scholar 

  13. Balooch G, Marshall GW, Marshall SJ, Warren OL, Asif SA, Balooch M (2004) Evaluation of a new modulus mapping technique to investigate microstructural features of human teeth. J Biomech 37:1223–1232. doi:10.1016/j.jbiomech.2003.12.012

    Article  Google Scholar 

  14. Gaboriaud F, Dufrêne YF (2007) Atomic force microscopy of microbial cells: application to nanomechanical properties, surface forces and molecular recognition forces. Colloid Surface B 54:10–19. doi:10.1016/j.colsurfb.2006.09.014

    Article  Google Scholar 

  15. Ryou H, Pashley DH, Tay FR, Arola D (2013) A characterization of the mechanical behavior of resin-infiltrated dentin using nanoscopic dynamic mechanical analysis. Dent Mater 29:719–728. doi:10.1016/j.dental.2013.03.022

    Article  Google Scholar 

  16. Sahin O, Erina N (2008) High-resolution and large dynamic range nanomechanical mapping in tapping-mode atomic force microscopy. Nanotechnology 19:445717. doi:10.1088/0957-4484/19/44/445717

    Article  Google Scholar 

  17. Syed Asif SA, Wahl KJ, Colton RJ, Warren OL (2001) Quantitative imaging of nanoscale mechanical properties using hybrid nanoindentation and force modulation. J Appl Phys 90:1192. doi:10.1063/1.1380218

    Article  Google Scholar 

  18. Mavko G, Mukerji T, Dvorkin J (2009) The rock physics handbook: tools for seismic analysis of porous media. Cambridge University Press, Cambridge

    Book  Google Scholar 

  19. Hysitron (2012) TI 950 TriboIndenter User Manual

  20. Fischer-Cripps AC (2007) Introduction to contact mechanics. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgements

The data for this paper are available at the Colorado School of Mines data repository. The authors thank the OCLASSH consortium based at the Colorado School of Mines for the samples and their support, and Lyn Canter for sample preparation and valuable discussions. Taylor Wilkinson also acknowledges the financial support provided by the Abernathy Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corinne E. Packard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilkinson, T.M., Zargari, S., Prasad, M. et al. Optimizing nano-dynamic mechanical analysis for high-resolution, elastic modulus mapping in organic-rich shales. J Mater Sci 50, 1041–1049 (2015). https://doi.org/10.1007/s10853-014-8682-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8682-5

Keywords

Navigation