Journal of Materials Science

, Volume 50, Issue 3, pp 1103–1116 | Cite as

Preparation, characterization, and application in biosensors of functionalized platforms with poly(4-aminobenzoic acid)

  • Lucas F. Ferreira
  • Cátia C. Santos
  • Filipe S. da Cruz
  • Ricardo A. M. S. Correa
  • Rodrigo M. Verly
  • Leonardo M. Da Silva
Original Paper


Electropolymerization of 4-aminobenzoic acid (4-ABA) on graphite electrodes (GEs) was investigated for the development of electrochemically functionalized platforms applied to the immobilization of biomolecules. The electrogeneration of 4-ABA was carried out in perchloric acid solutions using cyclic voltammetry (CV) and chronoamperometry (CA) techniques. In the case of CV studies, the GEs were modified by applying 100 consecutive potential cycles, while, in the case of CA studies, the electrodes were modified at different potentials (E/V vs. Ag/AgCl): 0.95, 1.05, and 1.15. The modified GEs were characterized in HClO4 solutions in the presence and absence of the ferricyanide/ferrocyanide redox couple (redox probe) using the CV and electrochemical impedance spectroscopy techniques. Scanning electron microscopy was used for morphological characterization. In the case of CA, the best electrochemical activities for the electropolymerization reaction are in the following order of performance: 1.05 > 1.15 > 0.95 V. The poly(4-ABA) platforms were investigated for the immobilization and direct detection of purine bases (adenine and guanine), where higher values of the anodic peak current (I p,a) were observed for the transducers electroformed using CV. In the case of immobilization of poly(GA) oligonucleotides, as well as for the recognition of the hybridization event with the complementary target poly(CT), methylene blue (MB) and ethidium bromide (EB) were used as the indicator and intercalator, respectively. MB was reduced at −0.26 V resulting in the cathodic peak current (I p,c) for the ssDNA, while EB was oxidized at +0.58 V yielding the higher anodic peak current (I p,a) for the dsDNA. The platforms were also evaluated for immobilization of the DD K peptide, with the antibacterial activity and biological recognition being verified using the complementary (phospholipid 1-palmitoyl-2-oleoyl phosphatidylcholine—POPC) and noncomplementary (phospholipid POPC + cholesterol) targets. The recognition mechanism was monitored from impedance measurements, with a good interaction of the DD K peptide with the POPC mimetic membrane being verified. In addition, the interaction was affected by the presence of cholesterol, revealing that the use of poly(4-ABA) platforms is very promising for the development of biosensors.


Methylene Blue Cyclic Voltammetry Polymeric Film Electrochemical Impedance Spectroscopy Ethidium Bromide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank the following Brazilian Foundations for the financial support received: Fundação de Amparo à Pesquisa do Estado de Minas Gerais-FAPEMIG (Project: APQ-00131-11); Coordenação de Aperfeiçoamento do Ensino Superior-CAPES. L.M. Da Silva wishes to thank the support received from FAPEMIG and Secretaria de Estado de Ciência, Tecnologia e Ensino Superior-SECTES for the LMMA Project (CEX-112/10). This work is a collaborative research project of members of the Rede Mineira de Quimica (RQ-MG) supported by FAPEMIG (Project: Rede-113/10).


  1. 1.
    Amine A, Mohammadi H, Bourais I, Palleschi G (2006) Enzyme inhibition-based biosensors for food safety and environmental monitoring. Biosens Bioelectron 21:1405–1423. doi: 10.1016/j.bios.2005.07.012 CrossRefGoogle Scholar
  2. 2.
    Zhang XY, Zhou LY, Luo HQ, Li NB (2013) A sensitive and label-free impedimetric biosensor based on an adjunct probe. Anal Chim Acta 776:11–16. doi: 10.1016/j.aca.2013.03.030 CrossRefGoogle Scholar
  3. 3.
    Balvedi RP, Castro AC, Madurro JM, Brito-Madurro AG (2014) Detection of a specific biomarker for Epstein–Barr virus using a polymer-based genosensor. Int J Mol Sci 15:9051–9066. doi: 10.3390/ijms15059051 CrossRefGoogle Scholar
  4. 4.
    Wang J (2007) Electrochemical glucose biosensors. Chem Rev 108:814–825. doi: 10.1021/cr068123a CrossRefGoogle Scholar
  5. 5.
    Bechinger B (2004) Structure and function of membrane-lytic peptides. Crit Rev Plant Sci 23:271–292. doi: 10.1080/07352680490452825 CrossRefGoogle Scholar
  6. 6.
    Blohm DH, Guiseppi-Elie A (2001) New developments in microarray technology. Curr Opin Biotechnol 12:41–47. doi: 10.1016/S0958-1669(00)00175-0 CrossRefGoogle Scholar
  7. 7.
    Ding Y, Wang Q, Gao F, Gao F (2013) Highly sensitive and selective DNA biosensor using a dumbbell-shaped bis-groove binder of bi-acetylferrocene ethylenediamine complex as electrochemical indicator. Electrochim Acta 106:35–42. doi: 10.1016/j.electacta.2013.05.066 CrossRefGoogle Scholar
  8. 8.
    Liu S, Ye J, He P, Fang Y (1996) Voltammetric determination of sequence-specific DNA by electroactive intercalator on graphite electrode. Anal Chim Acta 335:239–243. doi: 10.1016/S0003-2670(96)00331-5 CrossRefGoogle Scholar
  9. 9.
    Zhu N, Zhang A, Wang Q, He P, Fang Y (2004) Electrochemical detection of DNA hybridization using methylene blue and electro-deposited zirconia thin films on gold electrodes. Anal Chim Acta 510:163–168. doi: 10.1016/j.aca.2004.01.017 CrossRefGoogle Scholar
  10. 10.
    Guimard NK, Gomez N, Schmidt CE (2007) Conducting polymers in biomedical engineering. Prog Polym Sci 32:876–921. doi: 10.1016/j.progpolymsci.2007.05.012 CrossRefGoogle Scholar
  11. 11.
    Álvarez-Romero GA, Garfias-García E, Ramírez-Silva MT, Galán-Vidal C, Romero-Romo M, Palomar-Pardavé M (2006) Electrochemical and AFM characterization of the electropolimerization of pyrrole over a graphite–epoxy resin solid composite electrode, in the presence of different anions. Appl Surf Sci 252:5783–5792. doi: 10.1016/j.apsusc.2005.07.060 CrossRefGoogle Scholar
  12. 12.
    Salgado R, del Rio R, del Valle MA, Armijo F (2013) Selective electrochemical determination of dopamine, using a poly(3,4-ethylenedioxythiophene)/polydopamine hybrid film modified electrode. J Electroanal Chem 704:130–136. doi: 10.1016/j.jelechem.2013.07.005 CrossRefGoogle Scholar
  13. 13.
    Batista CVF, Scaloni A, Rigden DJ, Silva LR, Rodrigues Romero AR, Dukor R, Sebben A, Talamo F, Bloch C (2001) A novel heterodimeric antimicrobial peptide from the tree-frog Phyllomedusa distincta. FEBS Lett 494:85–89. doi: 10.1016/S0014-5793(01)02324-9 CrossRefGoogle Scholar
  14. 14.
    Batista CVF, Rosendo da Silva L, Sebben A, Scaloni A, Ferrara L, Paiva GR, Olamendi-Portugal T, Possani LD, Bloch C Jr (1999) Antimicrobial peptides from the Brazilian frog Phyllomedusa distincta. Peptides 20:679–686. doi: 10.1016/S0196-9781(99)00050-9 CrossRefGoogle Scholar
  15. 15.
    Inzelt G (2008) Conducting polymers: a new era in electrochemistry. Springer, BerlinGoogle Scholar
  16. 16.
    Chan WC, White P (2000) Fmoc solid phase peptide synthesis: A practical approach. OUP, OxfordGoogle Scholar
  17. 17.
    Yang L, Li Y, Erf GF (2004) Interdigitated Array microelectrode-based electrochemical impedance immunosensor for detection of Escherichia coli O157:H7. Anal Chem 76:1107–1113. doi: 10.1021/ac0352575 CrossRefGoogle Scholar
  18. 18.
    Liu J, Li J, Dong S (1996) Interaction of brilliant cresyl blue and methylene green with DNA studied by spectrophotometric and voltammetric methods. Electroanalysis 8:803–807. doi: 10.1002/elan.1140080818 CrossRefGoogle Scholar
  19. 19.
    Yang W, Ozsoz M, Hibbert DB, Gooding JJ (2002) Evidence for the direct interaction between methylene blue and guanine bases using DNA-modified carbon paste electrodes. Electroanalysis 14:1299–1302. doi: 10.1002/1521-4109(200210)14:18<1299:aid-elan1299>;2-y CrossRefGoogle Scholar
  20. 20.
    Piedade JAP, Fernandes IR, Oliveira-Brett AM (2002) Electrochemical sensing of DNA–adriamycin interactions. Bioelectrochemistry 56:81–83. doi: 10.1016/S1567-5394(02)00013-0 CrossRefGoogle Scholar
  21. 21.
    Ibrahim MS (2001) Voltammetric studies of the interaction of nogalamycin antitumor drug with DNA. Anal Chim Acta 443:63–72. doi: 10.1016/S0003-2670(01)01184-9 CrossRefGoogle Scholar
  22. 22.
    Qi H, Li X, Chen P, Zhang C (2007) Electrochemical detection of DNA hybridization based on polypyrrole/ss-DNA/multi-wall carbon nanotubes paste electrode. Talanta 72:1030–1035. doi: 10.1016/j.talanta.2006.12.032 CrossRefGoogle Scholar
  23. 23.
    Herrero AA, Gomez RF, Snedecor B, Tolman CJ, Roberts MF (1985) Growth inhibition of Clostridium thermocellum by carboxylic acids: A mechanism based on uncoupling by weak acids. Appl Microbiol Biotechnol 22:53–62. doi: 10.1007/bf00252157 CrossRefGoogle Scholar
  24. 24.
    Verly RM, Rodrigues MA, Daghastanli KR, Denadai AM, Cuccovia IM, Bloch C Jr, Frézard F, Santoro MM, Piló-Veloso D, Bemquerer MP (2008) Effect of cholesterol on the interaction of the amphibian antimicrobial peptide DD K with liposomes. Peptides 29:15–24. doi: 10.1016/j.peptides.2007.10.028 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Lucas F. Ferreira
    • 1
  • Cátia C. Santos
    • 1
  • Filipe S. da Cruz
    • 1
  • Ricardo A. M. S. Correa
    • 1
  • Rodrigo M. Verly
    • 2
  • Leonardo M. Da Silva
    • 3
  1. 1.Laboratório de Eletroquímica e Nanotecnologia Aplicada, Instituto de Ciência e TecnologiaUniversidade Federal dos Vales do Jequitinhonha e MucuriDiamantinaBrazil
  2. 2.Laboratório de Síntese e Estrutura de Biomoléculas, Departamento de QuímicaUniversidade Federal dos Vales do Jequitinhonha e MucuriDiamantinaBrazil
  3. 3.Laboratório de Eletroquímica e Química Ambiental, Departamento de QuímicaUniversidade Federal dos Vales do Jequitinhonha e MucuriDiamantinaBrazil

Personalised recommendations