Abstract
Carbon nanofibers, due to their high electric conductivity and excellent mechanical strength, have been studied and applied in areas such as energy storage, tissue engineering, filtration, and catalysis. So far, carbon nanofibers have been mainly produced by electrospinning and subsequent heat treatments. However, the great difficulty of carbon nanofibers to be scaled up through electrospinning confines the productivity and practical application of this extensively investigated material category. Recently, centrifugal spinning has drawn attention due to its high production rate (500 times faster than traditional electrospinning), simple set-up, and ease of scaling-up. Herein, tin-containing carbon nanofibers were prepared by facile centrifugal spinning from tin chloride-polyacrylonitrile precursor solutions and subsequent thermal treatments. Polymer-salt-solvent relations and resultant rheological effects upon solution properties and fiber structures were discussed, and the performance of centrifugally spun tin-containing carbon nanofibers as anode material for lithium-ion batteries was evaluated. An excellent reversible capacity of 607 mAh g−1 was achieved at the initial cycle and a relatively high specific capacity of 430 mAh g−1 was maintained after 100 cycles. It is, therefore, demonstrated that centrifugal-spun tin-containing carbon nanofibers are promising anode material for lithium-ion batteries, and centrifugal spinning, as a nanofiber fabrication alternative to electrospinning, shows great potential in large-scale nanofiber production.
This is a preview of subscription content, access via your institution.










References
- 1.
Yu Y, Gu L, Wang C, Dhanabalan A, van Aken PA, Maier J (2009) Encapsulation of Sn@carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries. Angew Chem Int Ed 48:6485–6489
- 2.
Zhang X, Ji L, Toprakci O, Liang Y, Alcoutlabi M (2011) Electrospun nanofiber-based anodes, cathodes, and separators for advanced lithium-ion batteries. Polym Rev 51:239–264
- 3.
Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367
- 4.
Yoo HD, Markevich E, Salitra G, Sharon D, Aurbach D (2014) On the challenge of developing advanced technologies for electrochemical energy storage and conversion. Mater Today 17:110–121
- 5.
Sethuraman VA, Kowolik K, Srinivasan V (2011) Increased cycling efficiency and rate capability of copper-coated silicon anodes in lithium-ion batteries. J Power Sources 196:393–398
- 6.
Li Y, Guo B, Ji L et al (2013) Structure control and performance improvement of carbon nanofibers containing a dispersion of silicon nanoparticles for energy storage. Carbon 51:185–194
- 7.
Xue L, Xia X, Tucker T et al (2013) A simple method to encapsulate SnSb nanoparticles into hollow carbon nanofibers with superior lithium-ion storage capability. J Mater Chem A 1:13807–13813
- 8.
Fu K, Xue L, Yildiz O et al (2013) Effect of CVD carbon coatings on Si@CNF composite as anode for lithium-ion batteries. Nano Energy 2:976–986
- 9.
Wang H, Gao P, Lu S et al (2011) The effect of tin content to the morphology of Sn/carbon nanofiber and the electrochemical performance as anode material for lithium batteries. Electrochim Acta 58:44–51
- 10.
Zuo P, Wang Z, Yin G et al (2008) Electrochemical investigation of silicon/carbon composite as anode material for lithium ion batteries. J Mater Sci 43:3149–3152
- 11.
Fu K, Yildiz O, Bhanushali H et al (2013) Aligned carbon nanotube-silicon sheets: a novel nano-architecture for flexible lithium ion battery electrodes. Adv Mater 25:5109–5114
- 12.
Chen J, Zhu Z, Wang S et al (2013) Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries. Nano Lett 14:153–157
- 13.
Zhang WM, Hu JS, Guo YG et al (2008) Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv Mater 20:1160–1165
- 14.
Yu Y, Yang Q, Teng D, Yang X, Ryu S (2010) Reticular Sn nanoparticle-dispersed PAN-based carbon nanofibers for anode material in rechargeable lithium-ion batteries. Electrochem Commun 12:1187–1190
- 15.
Teo W, Kotaki M, Mo X, Ramakrishna S (2005) Porous tubular structures with controlled fibre orientation using a modified electrospinning method. Nanotechnology 16:918–924
- 16.
Luo CJ, Stoyanov SD, Stride E, Pelan E, Edirisinghe M (2012) Electrospinning versus fibre production methods: from specifics to technological convergence. Chem Soc Rev 41:4708–4735
- 17.
Alamein MA, Liu Q, Stephens S et al (2013) Nanospiderwebs: artificial 3D extracellular matrix from nanofibers by novel clinical grade electrospinning for stem cell delivery. Adv Healthc Mater 2:702–717
- 18.
Yang Y, Jia Z, Li Q et al (2010) A shield ring enhanced equilateral hexagon distributed multi-needle electrospinning spinneret. Dielectr Electr Insul IEEE Trans 17:1592–1601
- 19.
Badrossamay MR, Mcilwee HA, Goss JA, Parker KK (2010) Nanofiber assembly by rotary jet-spinning. Nano Lett 10:2257–2261
- 20.
Ren L, Simmons TJ, Lu F, Rahmi O, Kotha SP (2014) Template free and large-scale fabrication of silica nanotubes with centrifugal jet spinning. Chem Eng J 254:39–45
- 21.
Mahalingam S, Edirisinghe M (2013) Forming of polymer nanofibers by a pressurised gyration process. Macromol Rapid Comm 34:1134–1139
- 22.
Sarkar K, Gomez C, Zambrano S et al (2010) Electrospinning to Forcespinning™. Mater Today 13:12–14
- 23.
Weitz RT, Rauschenbach S, Burghard M, Kern K (2008) Polymer nanofibers via nozzle-free centrifugal spinning. Nano Lett 8:1187–1191
- 24.
Lu Y, Li Y, Zhang S et al (2013) Parameter study and characterization for polyacrylonitrile nanofibers fabricated via centrifugal spinning process. Eur Polym J 49:3834–3845
- 25.
M Schabikowski, J Tomaszewska, D Kata, T Graule (2014) Rotary jet-spinning of hematite fibers. Text Res J. doi:10.1177/0040517514542969
- 26.
Fang Y, Herbert M, Schiraldi DA, Ellison CJ (2014) Tin fluorophosphate nonwovens by melt state centrifugal Forcespinning. J Mater Sci 49:8252–8260
- 27.
Ren L, Pandit V, Elkin J, Denman T, Cooper JA, Kotha SP (2013) Large-scale and highly efficient synthesis of micro- and nano-fibers with controlled fiber morphology by centrifugal jet spinning for tissue regeneration. Nanoscale 5:2337–2345
- 28.
Baicheng Weng FX, Salinas Alfonso, Lozano Karen (2014) Mass production of carbon nanotube reinforced poly(methyl methacrylate) nonwoven nanofiber mats. Carbon 75:217–226
- 29.
Baicheng Weng FX, Lozano Karen (2014) Mass production of carbon nanotube-reinforced polyacrylonitrile fine composite fibers. J Appl Polym Sci 131:40302
- 30.
Yu Y, Gu L, Zhu C, Maier J (2009) Tin nanoparticles encapsulated in porous multichannel carbon microtubes: preparation by single-nozzle electrospinning and application as anode material for high-performance li-based batteries. JACS 131:15984–15985
- 31.
Kovalenko I et al (2011) A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334:75–79
- 32.
Du J, Zhang X (2008) Role of polymer-salt-solvent interactions in the electrospinning of polyacrylonitrile/iron acetylacetonate. J Appl Polym Sci 109:2935–2941
- 33.
Phadke MA, Musale DA, Kulkarni SS, Karode SK (2005) Poly (acrylonitrile) ultrafiltration membranes. I. Polymer‐salt‐solvent interactions. J Polym Sci Polym Phys 43:2061–2073
- 34.
Fetters LJ, Lohse DJ, Richter D, Witten TA, Zirkel A (1994) Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties. Macromolecules 27:4639–4647
- 35.
Li S, Chen C, Fu K et al (2013) Nanosized Ge@CNF, Ge@C@CNF and Ge@CNF@C composites via chemical vapour deposition method for use in advanced lithium-ion batteries. J Power Sources 253:366–372
- 36.
Qiao H, Zheng Z, Zhang L, Xiao L (2008) SnO2@C core-shell spheres: synthesis, characterization, and performance in reversible Li-ion storage. J Mater Sci 43:2778–2784
- 37.
Ji L, Zhang X (2009) Electrospun carbon nanofibers containing silicon particles as an energy-storage medium. Carbon 47:3219–3226
- 38.
Wang Y, Zeng HC, Lee JY (2006) Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers. Adv Mater 18:645–649
Acknowledgements
This research was supported by National Science Foundation (CMMI-1231287). The authors thank Mr. Chuck Mooney in the Analytical Instrumentation Facility of North Carolina State University for taking the SEM and EDS tests.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jiang, H., Ge, Y., Fu, K. et al. Centrifugally-spun tin-containing carbon nanofibers as anode material for lithium-ion batteries. J Mater Sci 50, 1094–1102 (2015). https://doi.org/10.1007/s10853-014-8666-5
Received:
Accepted:
Published:
Issue Date:
Keywords
- Sodium Alginate
- Precursor Solution
- Anode Material
- SnCl2
- Coulombic Efficiency