Centrifugally-spun tin-containing carbon nanofibers as anode material for lithium-ion batteries

Abstract

Carbon nanofibers, due to their high electric conductivity and excellent mechanical strength, have been studied and applied in areas such as energy storage, tissue engineering, filtration, and catalysis. So far, carbon nanofibers have been mainly produced by electrospinning and subsequent heat treatments. However, the great difficulty of carbon nanofibers to be scaled up through electrospinning confines the productivity and practical application of this extensively investigated material category. Recently, centrifugal spinning has drawn attention due to its high production rate (500 times faster than traditional electrospinning), simple set-up, and ease of scaling-up. Herein, tin-containing carbon nanofibers were prepared by facile centrifugal spinning from tin chloride-polyacrylonitrile precursor solutions and subsequent thermal treatments. Polymer-salt-solvent relations and resultant rheological effects upon solution properties and fiber structures were discussed, and the performance of centrifugally spun tin-containing carbon nanofibers as anode material for lithium-ion batteries was evaluated. An excellent reversible capacity of 607 mAh g−1 was achieved at the initial cycle and a relatively high specific capacity of 430 mAh g−1 was maintained after 100 cycles. It is, therefore, demonstrated that centrifugal-spun tin-containing carbon nanofibers are promising anode material for lithium-ion batteries, and centrifugal spinning, as a nanofiber fabrication alternative to electrospinning, shows great potential in large-scale nanofiber production.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Yu Y, Gu L, Wang C, Dhanabalan A, van Aken PA, Maier J (2009) Encapsulation of Sn@carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries. Angew Chem Int Ed 48:6485–6489

    Article  Google Scholar 

  2. 2.

    Zhang X, Ji L, Toprakci O, Liang Y, Alcoutlabi M (2011) Electrospun nanofiber-based anodes, cathodes, and separators for advanced lithium-ion batteries. Polym Rev 51:239–264

    Article  Google Scholar 

  3. 3.

    Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  Google Scholar 

  4. 4.

    Yoo HD, Markevich E, Salitra G, Sharon D, Aurbach D (2014) On the challenge of developing advanced technologies for electrochemical energy storage and conversion. Mater Today 17:110–121

    Article  Google Scholar 

  5. 5.

    Sethuraman VA, Kowolik K, Srinivasan V (2011) Increased cycling efficiency and rate capability of copper-coated silicon anodes in lithium-ion batteries. J Power Sources 196:393–398

    Article  Google Scholar 

  6. 6.

    Li Y, Guo B, Ji L et al (2013) Structure control and performance improvement of carbon nanofibers containing a dispersion of silicon nanoparticles for energy storage. Carbon 51:185–194

    Article  Google Scholar 

  7. 7.

    Xue L, Xia X, Tucker T et al (2013) A simple method to encapsulate SnSb nanoparticles into hollow carbon nanofibers with superior lithium-ion storage capability. J Mater Chem A 1:13807–13813

    Article  Google Scholar 

  8. 8.

    Fu K, Xue L, Yildiz O et al (2013) Effect of CVD carbon coatings on Si@CNF composite as anode for lithium-ion batteries. Nano Energy 2:976–986

    Article  Google Scholar 

  9. 9.

    Wang H, Gao P, Lu S et al (2011) The effect of tin content to the morphology of Sn/carbon nanofiber and the electrochemical performance as anode material for lithium batteries. Electrochim Acta 58:44–51

    Article  Google Scholar 

  10. 10.

    Zuo P, Wang Z, Yin G et al (2008) Electrochemical investigation of silicon/carbon composite as anode material for lithium ion batteries. J Mater Sci 43:3149–3152

    Article  Google Scholar 

  11. 11.

    Fu K, Yildiz O, Bhanushali H et al (2013) Aligned carbon nanotube-silicon sheets: a novel nano-architecture for flexible lithium ion battery electrodes. Adv Mater 25:5109–5114

    Article  Google Scholar 

  12. 12.

    Chen J, Zhu Z, Wang S et al (2013) Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries. Nano Lett 14:153–157

    Google Scholar 

  13. 13.

    Zhang WM, Hu JS, Guo YG et al (2008) Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv Mater 20:1160–1165

    Article  Google Scholar 

  14. 14.

    Yu Y, Yang Q, Teng D, Yang X, Ryu S (2010) Reticular Sn nanoparticle-dispersed PAN-based carbon nanofibers for anode material in rechargeable lithium-ion batteries. Electrochem Commun 12:1187–1190

    Article  Google Scholar 

  15. 15.

    Teo W, Kotaki M, Mo X, Ramakrishna S (2005) Porous tubular structures with controlled fibre orientation using a modified electrospinning method. Nanotechnology 16:918–924

    Article  Google Scholar 

  16. 16.

    Luo CJ, Stoyanov SD, Stride E, Pelan E, Edirisinghe M (2012) Electrospinning versus fibre production methods: from specifics to technological convergence. Chem Soc Rev 41:4708–4735

    Article  Google Scholar 

  17. 17.

    Alamein MA, Liu Q, Stephens S et al (2013) Nanospiderwebs: artificial 3D extracellular matrix from nanofibers by novel clinical grade electrospinning for stem cell delivery. Adv Healthc Mater 2:702–717

    Article  Google Scholar 

  18. 18.

    Yang Y, Jia Z, Li Q et al (2010) A shield ring enhanced equilateral hexagon distributed multi-needle electrospinning spinneret. Dielectr Electr Insul IEEE Trans 17:1592–1601

    Article  Google Scholar 

  19. 19.

    Badrossamay MR, Mcilwee HA, Goss JA, Parker KK (2010) Nanofiber assembly by rotary jet-spinning. Nano Lett 10:2257–2261

    Article  Google Scholar 

  20. 20.

    Ren L, Simmons TJ, Lu F, Rahmi O, Kotha SP (2014) Template free and large-scale fabrication of silica nanotubes with centrifugal jet spinning. Chem Eng J 254:39–45

    Article  Google Scholar 

  21. 21.

    Mahalingam S, Edirisinghe M (2013) Forming of polymer nanofibers by a pressurised gyration process. Macromol Rapid Comm 34:1134–1139

    Article  Google Scholar 

  22. 22.

    Sarkar K, Gomez C, Zambrano S et al (2010) Electrospinning to Forcespinning™. Mater Today 13:12–14

    Article  Google Scholar 

  23. 23.

    Weitz RT, Rauschenbach S, Burghard M, Kern K (2008) Polymer nanofibers via nozzle-free centrifugal spinning. Nano Lett 8:1187–1191

    Article  Google Scholar 

  24. 24.

    Lu Y, Li Y, Zhang S et al (2013) Parameter study and characterization for polyacrylonitrile nanofibers fabricated via centrifugal spinning process. Eur Polym J 49:3834–3845

    Article  Google Scholar 

  25. 25.

    M Schabikowski, J Tomaszewska, D Kata, T Graule (2014) Rotary jet-spinning of hematite fibers. Text Res J. doi:10.1177/0040517514542969

  26. 26.

    Fang Y, Herbert M, Schiraldi DA, Ellison CJ (2014) Tin fluorophosphate nonwovens by melt state centrifugal Forcespinning. J Mater Sci 49:8252–8260

    Article  Google Scholar 

  27. 27.

    Ren L, Pandit V, Elkin J, Denman T, Cooper JA, Kotha SP (2013) Large-scale and highly efficient synthesis of micro- and nano-fibers with controlled fiber morphology by centrifugal jet spinning for tissue regeneration. Nanoscale 5:2337–2345

    Article  Google Scholar 

  28. 28.

    Baicheng Weng FX, Salinas Alfonso, Lozano Karen (2014) Mass production of carbon nanotube reinforced poly(methyl methacrylate) nonwoven nanofiber mats. Carbon 75:217–226

    Article  Google Scholar 

  29. 29.

    Baicheng Weng FX, Lozano Karen (2014) Mass production of carbon nanotube-reinforced polyacrylonitrile fine composite fibers. J Appl Polym Sci 131:40302

    Google Scholar 

  30. 30.

    Yu Y, Gu L, Zhu C, Maier J (2009) Tin nanoparticles encapsulated in porous multichannel carbon microtubes: preparation by single-nozzle electrospinning and application as anode material for high-performance li-based batteries. JACS 131:15984–15985

    Article  Google Scholar 

  31. 31.

    Kovalenko I et al (2011) A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334:75–79

    Article  Google Scholar 

  32. 32.

    Du J, Zhang X (2008) Role of polymer-salt-solvent interactions in the electrospinning of polyacrylonitrile/iron acetylacetonate. J Appl Polym Sci 109:2935–2941

    Article  Google Scholar 

  33. 33.

    Phadke MA, Musale DA, Kulkarni SS, Karode SK (2005) Poly (acrylonitrile) ultrafiltration membranes. I. Polymer‐salt‐solvent interactions. J Polym Sci Polym Phys 43:2061–2073

    Article  Google Scholar 

  34. 34.

    Fetters LJ, Lohse DJ, Richter D, Witten TA, Zirkel A (1994) Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties. Macromolecules 27:4639–4647

    Article  Google Scholar 

  35. 35.

    Li S, Chen C, Fu K et al (2013) Nanosized Ge@CNF, Ge@C@CNF and Ge@CNF@C composites via chemical vapour deposition method for use in advanced lithium-ion batteries. J Power Sources 253:366–372

    Article  Google Scholar 

  36. 36.

    Qiao H, Zheng Z, Zhang L, Xiao L (2008) SnO2@C core-shell spheres: synthesis, characterization, and performance in reversible Li-ion storage. J Mater Sci 43:2778–2784

    Article  Google Scholar 

  37. 37.

    Ji L, Zhang X (2009) Electrospun carbon nanofibers containing silicon particles as an energy-storage medium. Carbon 47:3219–3226

    Article  Google Scholar 

  38. 38.

    Wang Y, Zeng HC, Lee JY (2006) Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers. Adv Mater 18:645–649

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by National Science Foundation (CMMI-1231287). The authors thank Mr. Chuck Mooney in the Analytical Instrumentation Facility of North Carolina State University for taking the SEM and EDS tests.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiangwu Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Ge, Y., Fu, K. et al. Centrifugally-spun tin-containing carbon nanofibers as anode material for lithium-ion batteries. J Mater Sci 50, 1094–1102 (2015). https://doi.org/10.1007/s10853-014-8666-5

Download citation

Keywords

  • Sodium Alginate
  • Precursor Solution
  • Anode Material
  • SnCl2
  • Coulombic Efficiency