Skip to main content

Advertisement

Log in

Supercritical impregnation of drugs and supercritical fluid deposition of metals into aerogels

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The presented review covers the latest research on supercritical impregnation into organic and inorganic aerogels by investigating those factors that influence the impregnation. Supercritical impregnation is a promising method for incorporating drugs within porous carriers including for water insoluble drugs. An additional step (reduction from metallic precursor to metal) is required for the supercritical impregnation of metallic precursors. Hence, this expanded method is preferably termed as supercritical fluid deposition or adsorption. Supercritical impregnation of drugs, as well as metals, are mostly influenced by interactions between the compound and aerogel matrix, supercritical impregnation conditions, and the characteristics of a compound within a supercritical fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kistler SS (1931) Coherent expanded aerogels and jellies. Nature 127:741. doi:10.1038/127741a0

    Article  Google Scholar 

  2. Kendall JL, Canelas DA, Young JL, DeSimone JM (1999) Polymerizations in supercritical carbon dioxide. Chem Rev 99:543–564. doi:10.1021/cr9700336

    Article  Google Scholar 

  3. Lim JS, Lee YY, Chun HS (1994) Phase equilibria for carbon dioxide–ethanol–water system at elevated pressures. J Supercrit Fluids 7:219–230. doi:10.1016/0896-8446(94)90009-4

    Article  Google Scholar 

  4. Pierre AC, Pajonk GM (2002) Chemistry of aerogels and their applications. Chem Rev 102:4243–4266. doi:10.1021/cr0101306

    Article  Google Scholar 

  5. Job N, Théry A, Pirard R, Marien J, Kocon L, Rouzard JN, Beguin F, Pirard JP (2005) Carbon aerogels, cryogels and xerogels: influence of the drying method on the textural properties of porous carbon materials. Carbon 43:2481–2494. doi:10.1016/j.carbon.2005.04.031

    Article  Google Scholar 

  6. Aegerter MA, Leventis N, Koebel MM (2011) Aerogels handbook. Springer, New York

    Book  Google Scholar 

  7. Berg A, Droege MW, Fellmann JD, Klaveness J, Rongved P (1996) Medical use of organic aerogels and biodegradable organic aerogels

  8. Akimov YK (2003) Fields of application of aerogels (review). Instrum Exp Tech 46:287–299. doi:10.1023/A:1024401803057

    Article  Google Scholar 

  9. Contolini RJ, Hrubesh LW, Bernhardt AF (1993) Aerogels for microelectronic applications: fast inexpensive, and light as air. Lawrence Livermore National Lab, Livermore

    Google Scholar 

  10. Pajonk GM (1991) Aerogel catalysts. Appl Catal 72:217–266. doi:10.1016/0166-9834(91)85054-Y

    Article  Google Scholar 

  11. Baetens R, Jelle BP, Gustavsen A (2011) Aerogel insulation for building applications: a state-of-the-art review. Energy Build 43:761–769. doi:10.1016/j.enbuild.2010.12.012

    Article  Google Scholar 

  12. Ling L, Qing-Han M (2005) Electrochemical properties of mesoporous carbon aerogel electrodes for electric double layer capacitors. J Mater Sci 40:4105–4107

    Article  Google Scholar 

  13. Kim SJ, Hwang SW, Hyun SH (2005) Preparation of carbon aerogel electrodes for supercapacitor and their electrochemical characteristics. J Mater Sci 40:725–731. doi:10.1007/s10853-005-6313-x

    Article  Google Scholar 

  14. Ulker Z, Erkey C (2014) An emerging platform for drug delivery: aerogel based systems. J Controll Release 177:51–63. doi:10.1016/j.jconrel.2013.12.033

    Article  Google Scholar 

  15. Üzer S, Akman U, Hortaçsu Ö (2006) Polymer swelling and impregnation using supercritical CO2: a model–component study towards producing controlled-release drugs. J Supercrit Fluids 38:119–128

    Article  Google Scholar 

  16. Kazarian S (2004) Supercritical fluid impregnation of polymers for drug delivery. Supercrit Fluid Technol Drug Prod Dev

  17. López-Periago A, Argemí A, Andanson JM, Fernandez V, Garcia-Gonzalez Ca, Kazarian SG, Saurina J, Domingo C (2009) Impregnation of a biocompatible polymer aided by supercritical CO2: evaluation of drug stability and drug–matrix interactions. J Supercrit Fluids 48:56–63. doi:10.1016/j.supflu.2008.09.015

    Article  Google Scholar 

  18. Siegel RA, Rathbone MJ (2012) Overview of controlled release mechanisms. In: Siepmann J, Siegel RA, Rathbone MJ (eds) Fundamentals and applications of controlled release drug delivery. Springer, New York, pp 19–43

    Chapter  Google Scholar 

  19. Kikic I, Sist P (2000) Applications of supercritical fluids to pharmaceuticals: controlled drug release systems. Supercrit Fluids 366:291–306

    Article  Google Scholar 

  20. Sharma D, Soni M, Kumar S, Gupta GD (2009) Solubility enhancement: eminent role in poorly soluble drugs. Res J Pharm Technol 2:220–224

    Google Scholar 

  21. Hadkar UB (2007) Physical pharmacy. Nirali Prakashan, Pune

    Google Scholar 

  22. García-González CA, Alnaief M, Smirnova I (2011) Polysaccharide-based aerogels: promising biodegradable carriers for drug delivery systems. Carbohydr Polym 86:1425–1438

    Article  Google Scholar 

  23. Braga MEM, Pato MTV, Silva HSRC, Ferreira EI, Gil MH, Duarte CMM (2008) Supercritical solvent impregnation of ophthalmic drugs on chitosan derivatives. J Supercrit Fluids 44:245–257. doi:10.1016/j.supflu.2007.10.002

    Article  Google Scholar 

  24. Mehling T, Smirnova I, Guenther U, Neubert RHH (2009) Polysaccharide-based aerogels as drug carriers. J Non-Cryst Solids 355:2472–2479

    Article  Google Scholar 

  25. Smirnova I, Suttiruengwong S, Arlt W (2005) Aerogels: tailor-made carriers for immediate and prolonged drug release. KONA Powder Part J 23:86–97. doi:10.14356/kona.2005012

    Article  Google Scholar 

  26. Smirnova I, Suttiruengwong S, Arlt W (2004) Feasibility study of hydrophilic and hydrophobic silica aerogels as drug delivery systems. J Non-Cryst Solids 350:54–60. doi:10.1016/j.jnoncrysol.2004.06.031

    Article  Google Scholar 

  27. Bhagat SD, Hirashima H, Rao AV (2007) Low density TEOS based silica aerogels using methanol solvent. J Mater Sci 42:3207–3214. doi:10.1007/s10853-006-1366-z

    Article  Google Scholar 

  28. Smirnova I, Mamic J, Arlt W (2003) Adsorption of drugs on silica aerogels. Langmuir 19:8521–8525. doi:10.1021/la0345587

    Article  Google Scholar 

  29. Giray S, Bal T, Kartal AM, Kizilel S, Erkey C (2012) Controlled drug delivery through a novel PEG hydrogel encapsulated silica aerogel system. J Biomed Mater Res A 100A:1307–1315. doi:10.1002/jbm.a.34056

    Article  Google Scholar 

  30. Gorle BSK, Smirnova I, McHugh MA (2009) Adsorption and thermal release of highly volatile compounds in silica aerogels. J Supercrit Fluids 48:85–92. doi:10.1016/j.supflu.2008.09.010

    Article  Google Scholar 

  31. Council of Europe (2004) European pharmacopoeia 5.0, vol 2. Council of Europe, Strasbourg

    Google Scholar 

  32. Bakhbakhi Y, Asif M, chafidz A, Ajbar A (2013) Supercritical antisolvent synthesis of fine griseofulvin particles. Adv Powder Technol 24:1006–1012. doi:10.1016/j.apt.2013.02.004

    Article  Google Scholar 

  33. Smirnova I, Türk M, Wischumerski R, Wahl MA (2005) Comparison of different methods for enhancing the dissolution rate of poorly soluble drugs: case of griseofulvin. Eng Life Sci 5:277–280. doi:10.1002/elsc.200500081

    Article  Google Scholar 

  34. Smirnova I, Suttiruengwong S, Seiler M, Arlt W (2004) Dissolution rate enhancement by adsorption of poorly soluble drugs on hydrophilic silica aerogels. Pharm Dev Technol 9:443–452

    Article  Google Scholar 

  35. Caputo G (2013) Fixed bed adsorption of drugs on silica aerogel from supercritical carbon dioxide solutions. Int J Chem Eng. doi:10.1155/2013/752719

    Google Scholar 

  36. Caputo G, Scognamiglio M, De Marco I (2012) Nimesulide adsorbed on silica aerogel using supercritical carbon dioxide. Chem Eng Res Des 90:1082–1089. doi:10.1016/j.cherd.2011.11.011

    Article  Google Scholar 

  37. Alnaief M, Antonyuk S, Hentzschel CM, Leopold CS, Heinrich S, Smirnova I (2012) A novel process for coating of silica aerogel microspheres for controlled drug release applications. Microporous Mesoporous Mater 160:167–173. doi:10.1016/j.micromeso.2012.02.009

    Article  Google Scholar 

  38. Trens P, Valentin R, Quignard F (2007) Cation enhanced hydrophilic character of textured alginate gel beads. Colloids Surf Physicochem Eng Asp 296:230–237. doi:10.1016/j.colsurfa.2006.09.049

    Article  Google Scholar 

  39. Kenar JA, Eller FJ, Felker FC, Jackson MA, Fanta GF (2014) Starch aerogel beads obtained from inclusion complexes prepared from high amylose starch and sodium palmitate. Green Chem 16:1921–1930. doi:10.1039/C3GC41895B

    Article  Google Scholar 

  40. Comin LM, Temelli F, Saldaña MDA (2012) Barley β-glucan aerogels as a carrier for flax oil via supercritical CO2. J Food Eng 111:625–631. doi:10.1016/j.jfoodeng.2012.03.005

    Article  Google Scholar 

  41. García-González CA, Uy JJ, Alnaief M, Smirnova I (2012) Preparation of tailor-made starch-based aerogel microspheres by the emulsion–gelation method. Carbohydr Polym 88:1378–1386. doi:10.1016/j.carbpol.2012.02.023

    Article  Google Scholar 

  42. García-González CA, Smirnova I (2013) Use of supercritical fluid technology for the production of tailor-made aerogel particles for delivery systems. J Supercrit Fluids 79:152–158. doi:10.1016/j.supflu.2013.03.001

    Article  Google Scholar 

  43. Betz M, García-González CA, Subrahmanyam RP, Smirnova I, Kulozik U (2012) Preparation of novel whey protein-based aerogels as drug carriers for life science applications. J Supercrit Fluids 72:111–119. doi:10.1016/j.supflu.2012.08.019

    Article  Google Scholar 

  44. Erkey C (2009) Preparation of metallic supported nanoparticles and films using supercritical fluid deposition. J Supercrit Fluids 47:517–522. doi:10.1016/j.supflu.2008.10.019

    Article  Google Scholar 

  45. Zhang Y, Erkey C (2006) Preparation of supported metallic nanoparticles using supercritical fluids: a review. J Supercrit Fluids 38:252–267. doi:10.1016/j.supflu.2006.03.021

    Article  Google Scholar 

  46. Yu KMK, Yeung CMY, Thompsett D, Tsang SC (2003) Aerogel-coated metal nanoparticle colloids as novel entities for the synthesis of defined supported metal catalysts. J Phys Chem B 107:4515–4526. doi:10.1021/jp0275239

    Article  Google Scholar 

  47. Bozbag SE, Zhang LC, Aindow M, Erkey C (2012) Carbon aerogel supported nickel nanoparticles and nanorods using supercritical deposition. J Supercrit Fluids 66:265–273. doi:10.1016/j.supflu.2012.02.027

    Article  Google Scholar 

  48. Claus P, Brückner A, Mohr C, Hofmeister H (2000) Supported gold nanoparticles from quantum dot to mesoscopic size scale: effect of electronic and structural properties on catalytic hydrogenation of conjugated functional groups. J Am Chem Soc 122:11430–11439. doi:10.1021/ja0012974

    Article  Google Scholar 

  49. Miller JM, Dunn B, Tran TD, Pekala RW (1997) Deposition of ruthenium nanoparticles on carbon aerogels for high energy density supercapacitor electrodes. J Electrochem Soc 144:L309–L311. doi:10.1149/1.1838142

    Article  Google Scholar 

  50. Maldonado-Hòdar FJ, Moreno-Castilla C, Rivera-Utrilla J, Ferro-GarcIa MA (2000) Metal–carbon aerogels as catalysts and catalyst supports. In: Avelino Corma FVM, Mendioroz S, Fierro JLG (eds) Studies in Surface Science and Catalysis. Elsevier, Amsterdam, pp 1007–1012

    Google Scholar 

  51. Bekyarova E, Kaneko K (2000) Structure and physical properties of tailor-made Ce, Zr-doped carbon aerogels. Adv Mater 12:1625–1628. doi:10.1002/1521-4095(200011)12:21<1625:AID-ADMA1625>3.0.CO;2-9

    Article  Google Scholar 

  52. Maldonado-Hódar FJ, Ferro-Garcıa MA, Rivera-Utrilla J, Moreno-Castilla C (1999) Synthesis and textural characteristics of organic aerogels, transition-metal-containing organic aerogels and their carbonized derivatives. Carbon 37:1199–1205. doi:10.1016/S0008-6223(98)00314-5

    Article  Google Scholar 

  53. Okitsu K, Nagaoka S, Tanabe S, Matsumoto H, Mizukoshi Y, Nagata Y (1999) Sonochemical preparation of size-controlled palladium nanoparticles on alumina surface. Chem Lett 28:271–272

    Article  Google Scholar 

  54. Martinez S, Vallribera A, Cotet CL, Popovici M, Maritn L, Roig A, Moreno-Manas M, Molins E (2005) Nanosized metallic particles embedded in silica and carbon aerogels as catalysts in the Mizoroki–Heck coupling reaction. New J Chem 29:1342–1345

    Article  Google Scholar 

  55. Baumann TF, Fox GA, Satcher JH, Yoshizawa N, Fu R, Dresselhaus MS (2002) Synthesis and characterization of copper-doped carbon aerogels. Langmuir 18:7073–7076. doi:10.1021/la0259003

    Article  Google Scholar 

  56. Dawidziuk MB, Carrasco-Marín F, Moreno-Castilla C (2009) Influence of support porosity and Pt content of Pt/carbon aerogel catalysts on metal dispersion and formation of self-assembled Pt–carbon hybrid nanostructures. Carbon 47:2679–2687. doi:10.1016/j.carbon.2009.05.025

    Article  Google Scholar 

  57. Stakheev AY, Kustov LM (1999) Effects of the support on the morphology and electronic properties of supported metal clusters: modern concepts and progress in 1990s. Appl Catal Gen 188:3–35. doi:10.1016/S0926-860X(99)00232-X

    Article  Google Scholar 

  58. Ramos J, Millán A, Palacio F (2000) Production of magnetic nanoparticles in a polyvinylpyridine matrix. Polymer 41:8461–8464. doi:10.1016/S0032-3861(00)00272-X

    Article  Google Scholar 

  59. Castro C, Ramos J, Millán A, Gonzalez-Calbet J, Palacio F (2000) Production of magnetic nanoparticles in imine polymer matrixes. Chem Mater 12:3681–3688. doi:10.1021/cm0011561

    Article  Google Scholar 

  60. Beecroft LL, Ober CK (1997) Nanocomposite materials for optical applications. Chem Mater 9:1302–1317. doi:10.1021/cm960441a

    Article  Google Scholar 

  61. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102. doi:10.1021/cr030063a

    Article  Google Scholar 

  62. Caputo G, De Marco I, Reverchon E (2010) Silica aerogel–metal composites produced by supercritical adsorption. J Supercrit Fluids 54:243–249. doi:10.1016/j.supflu.2010.05.003

    Article  Google Scholar 

  63. Morley KS, Marr PC, Webb PB, Berry AR, Allison FJ, Moldovan G, Brown PD, Howdle SM (2002) Clean preparation of nanoparticulate metals in porous supports: a supercritical route. J Mater Chem 12:1898–1905. doi:10.1039/b111111f

    Article  Google Scholar 

  64. Morley KS, Licence P, Marr PC, Hyde JR, Brown PD, Mokaya R, Xia Y, Howdle SM (2004) Supercritical fluids: a route to palladium–aerogel nanocomposites. J Mater Chem 14:1212. doi:10.1039/b311065f

    Article  Google Scholar 

  65. Zhang Y, Kang D, Saquing C, Aindow M, Erkey C (2005) Supported platinum nanoparticles by supercritical deposition. Ind Eng Chem Res 44:4161–4164. doi:10.1021/ie050345w

    Article  Google Scholar 

  66. Saquing CD, Cheng T-T, Aindow M, Erkey C (2004) Preparation of platinum/carbon aerogel nanocomposites using a supercritical deposition method. J Phys Chem B 108:7716–7722. doi:10.1021/jp049535v

    Article  Google Scholar 

  67. Petričević R, Glora M, Möginger A, Fricke J (2001) Skin formation on RF aerogel sheets. J Non-Cryst Solids 285:272–276. doi:10.1016/S0022-3093(01)00466-5

    Article  Google Scholar 

  68. Pekala RW (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24:3221–3227. doi:10.1007/BF01139044

    Article  Google Scholar 

  69. Bock V, Emmerling A, Saliger R, Fricke J (1997) Structural investigation of resorcinol formaldehyde and carbon aerogels using SAXS and BET. J Porous Mater 4:287–294. doi:10.1023/A:1009681407649

    Article  Google Scholar 

  70. Saquing CD, Kang D, Aindow M, Erkey C (2005) Investigation of the supercritical deposition of platinum nanoparticles into carbon aerogels. Microporous Mesoporous Mater 80:11–23. doi:10.1016/j.micromeso.2004.11.019

    Article  Google Scholar 

  71. Zhang Y, Kang D, Aindow M, Erkey C (2005) Preparation and characterization of ruthenium/carbon aerogel nanocomposites via a supercritical fluid route. J Phys Chem B 109:2617–2624. doi:10.1021/jp0467595

    Article  Google Scholar 

  72. Zhang Y, Cangul B, Garrabos Y, Erkey C (2008) Thermodynamics and kinetics of adsorption of bis(2,2,6,6-tetramethyl-3,5-heptanedionato) (1,5-cyclooctadiene) ruthenium(II) on carbon aerogel from supercritical CO2 solution. J Supercrit Fluids 44:71–77. doi:10.1016/j.supflu.2007.08.010

    Article  Google Scholar 

  73. Mirzaeian M, Hall PJ (2009) The control of porosity at nano scale in resorcinol formaldehyde carbon aerogels. J Mater Sci 44:2705–2713. doi:10.1007/s10853-009-3355-5

    Article  Google Scholar 

  74. Bozbag SE, Yasar NS, Zhang LC, Aindow M, Erkey C (2011) Adsorption of Pt(cod)me2 onto organic aerogels from supercritical solutions for the synthesis of supported platinum nanoparticles. J Supercrit Fluids 56:105–113. doi:10.1016/j.supflu.2010.10.045

    Article  Google Scholar 

  75. Yoda S, Ohtake K, Takebayashi Y, Sugeta T, Sako T (2000) Preparation of SiO2–TiO2 aerogels using supercritical impregnation. J Sol–Gel Sci Technol 19:719–723

    Article  Google Scholar 

  76. Yoda S, Otake K, Takebayashi Y, Sugeta T, Sako T (2001) Effects of supercritical impregnation conditions on the properties of silica–titania aerogels. J Non-Cryst Solids 285:8–12. doi:10.1016/S0022-3093(01)00424-0

    Article  Google Scholar 

  77. Yoda S, Takebayashi Y, Sugeta T, Otake K (2004) Platinum–silica aerogels via supercritical drying and impregnation. J Non-Cryst Solids 350:320–325. doi:10.1016/j.jnoncrysol.2004.06.026

    Article  Google Scholar 

  78. Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Gulf Professional Publishing, San Diego

    Google Scholar 

  79. Kikic I, Vecchione F (2003) Supercritical impregnation of polymers. Curr Opin Solid State Mater Sci 7:399–405. doi:10.1016/j.cossms.2003.09.001

    Article  Google Scholar 

  80. Hu X, Zheng S, Zhu L, Tanyi AR, Lan H, Hong Y, Su Y, Wang H (2013) Adsorption of 2-phenylethyl alcohol on silica aerogel from saturated solution in supercritical CO2. J Supercrit Fluids 79:41–45. doi:10.1016/j.supflu.2013.02.015

    Article  Google Scholar 

  81. Gorle BSK, Smirnova I, Arlt W (2010) Adsorptive crystallization of benzoic acid in aerogels from supercritical solutions. J Supercrit Fluids 52:249–257. doi:10.1016/j.supflu.2010.01.006

    Article  Google Scholar 

  82. Gorle BSK, Smirnova I, Dragan M, Arlt W (2008) Crystallization under supercritical conditions in aerogels. J Supercrit Fluids 44:78–84. doi:10.1016/j.supflu.2007.08.004

    Article  Google Scholar 

  83. Alnaief M, Smirnova I (2010) Effect of surface functionalization of silica aerogel on their adsorptive and release properties. J Non-Cryst Solids 356:1644–1649. doi:10.1016/j.jnoncrysol.2010.06.027

    Article  Google Scholar 

  84. Guenther U, Smirnova I, Neubert RHH (2008) Hydrophilic silica aerogels as dermal drug delivery systems: dithranol as a model drug. Eur J Pharm Biopharm 69:935–942. doi:10.1016/j.ejpb.2008.02.003

    Article  Google Scholar 

  85. Murillo-Cremaes N, López-Periago AM, Saurina J et al (2013) Nanostructured silica-based drug delivery vehicles for hydrophobic and moisture sensitive drugs. J Supercrit Fluids 73:34–42. doi:10.1016/j.supflu.2012.11.006

    Article  Google Scholar 

  86. Caputo G (2013) Supercritical fluid adsorption of domperidone on silica aerogel. Adv Chem Eng Sci 03:189–194. doi:10.4236/aces.2013.33024

    Article  Google Scholar 

  87. Díez-Municio M, Montilla A, Herrero M, Olano A, Ibanez E (2011) Supercritical CO2 impregnation of lactulose on chitosan: a comparison between scaffolds and microspheres form. J Supercrit Fluids 57:73–79

    Article  Google Scholar 

  88. Tenorio MJ, Torralvo MJ, Enciso E, Pando C, Renuncio JAR, Cabanas A (2009) Supercritical CO2 as a reaction and impregnation medium in the synthesis of Pd–SiO2 aerogel inverse opals. J Supercrit Fluids 49:369–376. doi:10.1016/j.supflu.2009.03.011

    Article  Google Scholar 

Download references

Acknowledgement

The authors wish to acknowledge the Slovenian Research Agency [Grant no.: 1000-11-860046] and University fund Marie Curie ITN project [Grant no.: 316959] for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Željko Knez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tkalec, G., Pantić, M., Novak, Z. et al. Supercritical impregnation of drugs and supercritical fluid deposition of metals into aerogels. J Mater Sci 50, 1–12 (2015). https://doi.org/10.1007/s10853-014-8626-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8626-0

Keywords