Abstract
The presented review covers the latest research on supercritical impregnation into organic and inorganic aerogels by investigating those factors that influence the impregnation. Supercritical impregnation is a promising method for incorporating drugs within porous carriers including for water insoluble drugs. An additional step (reduction from metallic precursor to metal) is required for the supercritical impregnation of metallic precursors. Hence, this expanded method is preferably termed as supercritical fluid deposition or adsorption. Supercritical impregnation of drugs, as well as metals, are mostly influenced by interactions between the compound and aerogel matrix, supercritical impregnation conditions, and the characteristics of a compound within a supercritical fluid.



Similar content being viewed by others
References
Kistler SS (1931) Coherent expanded aerogels and jellies. Nature 127:741. doi:10.1038/127741a0
Kendall JL, Canelas DA, Young JL, DeSimone JM (1999) Polymerizations in supercritical carbon dioxide. Chem Rev 99:543–564. doi:10.1021/cr9700336
Lim JS, Lee YY, Chun HS (1994) Phase equilibria for carbon dioxide–ethanol–water system at elevated pressures. J Supercrit Fluids 7:219–230. doi:10.1016/0896-8446(94)90009-4
Pierre AC, Pajonk GM (2002) Chemistry of aerogels and their applications. Chem Rev 102:4243–4266. doi:10.1021/cr0101306
Job N, Théry A, Pirard R, Marien J, Kocon L, Rouzard JN, Beguin F, Pirard JP (2005) Carbon aerogels, cryogels and xerogels: influence of the drying method on the textural properties of porous carbon materials. Carbon 43:2481–2494. doi:10.1016/j.carbon.2005.04.031
Aegerter MA, Leventis N, Koebel MM (2011) Aerogels handbook. Springer, New York
Berg A, Droege MW, Fellmann JD, Klaveness J, Rongved P (1996) Medical use of organic aerogels and biodegradable organic aerogels
Akimov YK (2003) Fields of application of aerogels (review). Instrum Exp Tech 46:287–299. doi:10.1023/A:1024401803057
Contolini RJ, Hrubesh LW, Bernhardt AF (1993) Aerogels for microelectronic applications: fast inexpensive, and light as air. Lawrence Livermore National Lab, Livermore
Pajonk GM (1991) Aerogel catalysts. Appl Catal 72:217–266. doi:10.1016/0166-9834(91)85054-Y
Baetens R, Jelle BP, Gustavsen A (2011) Aerogel insulation for building applications: a state-of-the-art review. Energy Build 43:761–769. doi:10.1016/j.enbuild.2010.12.012
Ling L, Qing-Han M (2005) Electrochemical properties of mesoporous carbon aerogel electrodes for electric double layer capacitors. J Mater Sci 40:4105–4107
Kim SJ, Hwang SW, Hyun SH (2005) Preparation of carbon aerogel electrodes for supercapacitor and their electrochemical characteristics. J Mater Sci 40:725–731. doi:10.1007/s10853-005-6313-x
Ulker Z, Erkey C (2014) An emerging platform for drug delivery: aerogel based systems. J Controll Release 177:51–63. doi:10.1016/j.jconrel.2013.12.033
Üzer S, Akman U, Hortaçsu Ö (2006) Polymer swelling and impregnation using supercritical CO2: a model–component study towards producing controlled-release drugs. J Supercrit Fluids 38:119–128
Kazarian S (2004) Supercritical fluid impregnation of polymers for drug delivery. Supercrit Fluid Technol Drug Prod Dev
López-Periago A, Argemí A, Andanson JM, Fernandez V, Garcia-Gonzalez Ca, Kazarian SG, Saurina J, Domingo C (2009) Impregnation of a biocompatible polymer aided by supercritical CO2: evaluation of drug stability and drug–matrix interactions. J Supercrit Fluids 48:56–63. doi:10.1016/j.supflu.2008.09.015
Siegel RA, Rathbone MJ (2012) Overview of controlled release mechanisms. In: Siepmann J, Siegel RA, Rathbone MJ (eds) Fundamentals and applications of controlled release drug delivery. Springer, New York, pp 19–43
Kikic I, Sist P (2000) Applications of supercritical fluids to pharmaceuticals: controlled drug release systems. Supercrit Fluids 366:291–306
Sharma D, Soni M, Kumar S, Gupta GD (2009) Solubility enhancement: eminent role in poorly soluble drugs. Res J Pharm Technol 2:220–224
Hadkar UB (2007) Physical pharmacy. Nirali Prakashan, Pune
García-González CA, Alnaief M, Smirnova I (2011) Polysaccharide-based aerogels: promising biodegradable carriers for drug delivery systems. Carbohydr Polym 86:1425–1438
Braga MEM, Pato MTV, Silva HSRC, Ferreira EI, Gil MH, Duarte CMM (2008) Supercritical solvent impregnation of ophthalmic drugs on chitosan derivatives. J Supercrit Fluids 44:245–257. doi:10.1016/j.supflu.2007.10.002
Mehling T, Smirnova I, Guenther U, Neubert RHH (2009) Polysaccharide-based aerogels as drug carriers. J Non-Cryst Solids 355:2472–2479
Smirnova I, Suttiruengwong S, Arlt W (2005) Aerogels: tailor-made carriers for immediate and prolonged drug release. KONA Powder Part J 23:86–97. doi:10.14356/kona.2005012
Smirnova I, Suttiruengwong S, Arlt W (2004) Feasibility study of hydrophilic and hydrophobic silica aerogels as drug delivery systems. J Non-Cryst Solids 350:54–60. doi:10.1016/j.jnoncrysol.2004.06.031
Bhagat SD, Hirashima H, Rao AV (2007) Low density TEOS based silica aerogels using methanol solvent. J Mater Sci 42:3207–3214. doi:10.1007/s10853-006-1366-z
Smirnova I, Mamic J, Arlt W (2003) Adsorption of drugs on silica aerogels. Langmuir 19:8521–8525. doi:10.1021/la0345587
Giray S, Bal T, Kartal AM, Kizilel S, Erkey C (2012) Controlled drug delivery through a novel PEG hydrogel encapsulated silica aerogel system. J Biomed Mater Res A 100A:1307–1315. doi:10.1002/jbm.a.34056
Gorle BSK, Smirnova I, McHugh MA (2009) Adsorption and thermal release of highly volatile compounds in silica aerogels. J Supercrit Fluids 48:85–92. doi:10.1016/j.supflu.2008.09.010
Council of Europe (2004) European pharmacopoeia 5.0, vol 2. Council of Europe, Strasbourg
Bakhbakhi Y, Asif M, chafidz A, Ajbar A (2013) Supercritical antisolvent synthesis of fine griseofulvin particles. Adv Powder Technol 24:1006–1012. doi:10.1016/j.apt.2013.02.004
Smirnova I, Türk M, Wischumerski R, Wahl MA (2005) Comparison of different methods for enhancing the dissolution rate of poorly soluble drugs: case of griseofulvin. Eng Life Sci 5:277–280. doi:10.1002/elsc.200500081
Smirnova I, Suttiruengwong S, Seiler M, Arlt W (2004) Dissolution rate enhancement by adsorption of poorly soluble drugs on hydrophilic silica aerogels. Pharm Dev Technol 9:443–452
Caputo G (2013) Fixed bed adsorption of drugs on silica aerogel from supercritical carbon dioxide solutions. Int J Chem Eng. doi:10.1155/2013/752719
Caputo G, Scognamiglio M, De Marco I (2012) Nimesulide adsorbed on silica aerogel using supercritical carbon dioxide. Chem Eng Res Des 90:1082–1089. doi:10.1016/j.cherd.2011.11.011
Alnaief M, Antonyuk S, Hentzschel CM, Leopold CS, Heinrich S, Smirnova I (2012) A novel process for coating of silica aerogel microspheres for controlled drug release applications. Microporous Mesoporous Mater 160:167–173. doi:10.1016/j.micromeso.2012.02.009
Trens P, Valentin R, Quignard F (2007) Cation enhanced hydrophilic character of textured alginate gel beads. Colloids Surf Physicochem Eng Asp 296:230–237. doi:10.1016/j.colsurfa.2006.09.049
Kenar JA, Eller FJ, Felker FC, Jackson MA, Fanta GF (2014) Starch aerogel beads obtained from inclusion complexes prepared from high amylose starch and sodium palmitate. Green Chem 16:1921–1930. doi:10.1039/C3GC41895B
Comin LM, Temelli F, Saldaña MDA (2012) Barley β-glucan aerogels as a carrier for flax oil via supercritical CO2. J Food Eng 111:625–631. doi:10.1016/j.jfoodeng.2012.03.005
García-González CA, Uy JJ, Alnaief M, Smirnova I (2012) Preparation of tailor-made starch-based aerogel microspheres by the emulsion–gelation method. Carbohydr Polym 88:1378–1386. doi:10.1016/j.carbpol.2012.02.023
García-González CA, Smirnova I (2013) Use of supercritical fluid technology for the production of tailor-made aerogel particles for delivery systems. J Supercrit Fluids 79:152–158. doi:10.1016/j.supflu.2013.03.001
Betz M, García-González CA, Subrahmanyam RP, Smirnova I, Kulozik U (2012) Preparation of novel whey protein-based aerogels as drug carriers for life science applications. J Supercrit Fluids 72:111–119. doi:10.1016/j.supflu.2012.08.019
Erkey C (2009) Preparation of metallic supported nanoparticles and films using supercritical fluid deposition. J Supercrit Fluids 47:517–522. doi:10.1016/j.supflu.2008.10.019
Zhang Y, Erkey C (2006) Preparation of supported metallic nanoparticles using supercritical fluids: a review. J Supercrit Fluids 38:252–267. doi:10.1016/j.supflu.2006.03.021
Yu KMK, Yeung CMY, Thompsett D, Tsang SC (2003) Aerogel-coated metal nanoparticle colloids as novel entities for the synthesis of defined supported metal catalysts. J Phys Chem B 107:4515–4526. doi:10.1021/jp0275239
Bozbag SE, Zhang LC, Aindow M, Erkey C (2012) Carbon aerogel supported nickel nanoparticles and nanorods using supercritical deposition. J Supercrit Fluids 66:265–273. doi:10.1016/j.supflu.2012.02.027
Claus P, Brückner A, Mohr C, Hofmeister H (2000) Supported gold nanoparticles from quantum dot to mesoscopic size scale: effect of electronic and structural properties on catalytic hydrogenation of conjugated functional groups. J Am Chem Soc 122:11430–11439. doi:10.1021/ja0012974
Miller JM, Dunn B, Tran TD, Pekala RW (1997) Deposition of ruthenium nanoparticles on carbon aerogels for high energy density supercapacitor electrodes. J Electrochem Soc 144:L309–L311. doi:10.1149/1.1838142
Maldonado-Hòdar FJ, Moreno-Castilla C, Rivera-Utrilla J, Ferro-GarcIa MA (2000) Metal–carbon aerogels as catalysts and catalyst supports. In: Avelino Corma FVM, Mendioroz S, Fierro JLG (eds) Studies in Surface Science and Catalysis. Elsevier, Amsterdam, pp 1007–1012
Bekyarova E, Kaneko K (2000) Structure and physical properties of tailor-made Ce, Zr-doped carbon aerogels. Adv Mater 12:1625–1628. doi:10.1002/1521-4095(200011)12:21<1625:AID-ADMA1625>3.0.CO;2-9
Maldonado-Hódar FJ, Ferro-Garcıa MA, Rivera-Utrilla J, Moreno-Castilla C (1999) Synthesis and textural characteristics of organic aerogels, transition-metal-containing organic aerogels and their carbonized derivatives. Carbon 37:1199–1205. doi:10.1016/S0008-6223(98)00314-5
Okitsu K, Nagaoka S, Tanabe S, Matsumoto H, Mizukoshi Y, Nagata Y (1999) Sonochemical preparation of size-controlled palladium nanoparticles on alumina surface. Chem Lett 28:271–272
Martinez S, Vallribera A, Cotet CL, Popovici M, Maritn L, Roig A, Moreno-Manas M, Molins E (2005) Nanosized metallic particles embedded in silica and carbon aerogels as catalysts in the Mizoroki–Heck coupling reaction. New J Chem 29:1342–1345
Baumann TF, Fox GA, Satcher JH, Yoshizawa N, Fu R, Dresselhaus MS (2002) Synthesis and characterization of copper-doped carbon aerogels. Langmuir 18:7073–7076. doi:10.1021/la0259003
Dawidziuk MB, Carrasco-Marín F, Moreno-Castilla C (2009) Influence of support porosity and Pt content of Pt/carbon aerogel catalysts on metal dispersion and formation of self-assembled Pt–carbon hybrid nanostructures. Carbon 47:2679–2687. doi:10.1016/j.carbon.2009.05.025
Stakheev AY, Kustov LM (1999) Effects of the support on the morphology and electronic properties of supported metal clusters: modern concepts and progress in 1990s. Appl Catal Gen 188:3–35. doi:10.1016/S0926-860X(99)00232-X
Ramos J, Millán A, Palacio F (2000) Production of magnetic nanoparticles in a polyvinylpyridine matrix. Polymer 41:8461–8464. doi:10.1016/S0032-3861(00)00272-X
Castro C, Ramos J, Millán A, Gonzalez-Calbet J, Palacio F (2000) Production of magnetic nanoparticles in imine polymer matrixes. Chem Mater 12:3681–3688. doi:10.1021/cm0011561
Beecroft LL, Ober CK (1997) Nanocomposite materials for optical applications. Chem Mater 9:1302–1317. doi:10.1021/cm960441a
Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102. doi:10.1021/cr030063a
Caputo G, De Marco I, Reverchon E (2010) Silica aerogel–metal composites produced by supercritical adsorption. J Supercrit Fluids 54:243–249. doi:10.1016/j.supflu.2010.05.003
Morley KS, Marr PC, Webb PB, Berry AR, Allison FJ, Moldovan G, Brown PD, Howdle SM (2002) Clean preparation of nanoparticulate metals in porous supports: a supercritical route. J Mater Chem 12:1898–1905. doi:10.1039/b111111f
Morley KS, Licence P, Marr PC, Hyde JR, Brown PD, Mokaya R, Xia Y, Howdle SM (2004) Supercritical fluids: a route to palladium–aerogel nanocomposites. J Mater Chem 14:1212. doi:10.1039/b311065f
Zhang Y, Kang D, Saquing C, Aindow M, Erkey C (2005) Supported platinum nanoparticles by supercritical deposition. Ind Eng Chem Res 44:4161–4164. doi:10.1021/ie050345w
Saquing CD, Cheng T-T, Aindow M, Erkey C (2004) Preparation of platinum/carbon aerogel nanocomposites using a supercritical deposition method. J Phys Chem B 108:7716–7722. doi:10.1021/jp049535v
Petričević R, Glora M, Möginger A, Fricke J (2001) Skin formation on RF aerogel sheets. J Non-Cryst Solids 285:272–276. doi:10.1016/S0022-3093(01)00466-5
Pekala RW (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24:3221–3227. doi:10.1007/BF01139044
Bock V, Emmerling A, Saliger R, Fricke J (1997) Structural investigation of resorcinol formaldehyde and carbon aerogels using SAXS and BET. J Porous Mater 4:287–294. doi:10.1023/A:1009681407649
Saquing CD, Kang D, Aindow M, Erkey C (2005) Investigation of the supercritical deposition of platinum nanoparticles into carbon aerogels. Microporous Mesoporous Mater 80:11–23. doi:10.1016/j.micromeso.2004.11.019
Zhang Y, Kang D, Aindow M, Erkey C (2005) Preparation and characterization of ruthenium/carbon aerogel nanocomposites via a supercritical fluid route. J Phys Chem B 109:2617–2624. doi:10.1021/jp0467595
Zhang Y, Cangul B, Garrabos Y, Erkey C (2008) Thermodynamics and kinetics of adsorption of bis(2,2,6,6-tetramethyl-3,5-heptanedionato) (1,5-cyclooctadiene) ruthenium(II) on carbon aerogel from supercritical CO2 solution. J Supercrit Fluids 44:71–77. doi:10.1016/j.supflu.2007.08.010
Mirzaeian M, Hall PJ (2009) The control of porosity at nano scale in resorcinol formaldehyde carbon aerogels. J Mater Sci 44:2705–2713. doi:10.1007/s10853-009-3355-5
Bozbag SE, Yasar NS, Zhang LC, Aindow M, Erkey C (2011) Adsorption of Pt(cod)me2 onto organic aerogels from supercritical solutions for the synthesis of supported platinum nanoparticles. J Supercrit Fluids 56:105–113. doi:10.1016/j.supflu.2010.10.045
Yoda S, Ohtake K, Takebayashi Y, Sugeta T, Sako T (2000) Preparation of SiO2–TiO2 aerogels using supercritical impregnation. J Sol–Gel Sci Technol 19:719–723
Yoda S, Otake K, Takebayashi Y, Sugeta T, Sako T (2001) Effects of supercritical impregnation conditions on the properties of silica–titania aerogels. J Non-Cryst Solids 285:8–12. doi:10.1016/S0022-3093(01)00424-0
Yoda S, Takebayashi Y, Sugeta T, Otake K (2004) Platinum–silica aerogels via supercritical drying and impregnation. J Non-Cryst Solids 350:320–325. doi:10.1016/j.jnoncrysol.2004.06.026
Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Gulf Professional Publishing, San Diego
Kikic I, Vecchione F (2003) Supercritical impregnation of polymers. Curr Opin Solid State Mater Sci 7:399–405. doi:10.1016/j.cossms.2003.09.001
Hu X, Zheng S, Zhu L, Tanyi AR, Lan H, Hong Y, Su Y, Wang H (2013) Adsorption of 2-phenylethyl alcohol on silica aerogel from saturated solution in supercritical CO2. J Supercrit Fluids 79:41–45. doi:10.1016/j.supflu.2013.02.015
Gorle BSK, Smirnova I, Arlt W (2010) Adsorptive crystallization of benzoic acid in aerogels from supercritical solutions. J Supercrit Fluids 52:249–257. doi:10.1016/j.supflu.2010.01.006
Gorle BSK, Smirnova I, Dragan M, Arlt W (2008) Crystallization under supercritical conditions in aerogels. J Supercrit Fluids 44:78–84. doi:10.1016/j.supflu.2007.08.004
Alnaief M, Smirnova I (2010) Effect of surface functionalization of silica aerogel on their adsorptive and release properties. J Non-Cryst Solids 356:1644–1649. doi:10.1016/j.jnoncrysol.2010.06.027
Guenther U, Smirnova I, Neubert RHH (2008) Hydrophilic silica aerogels as dermal drug delivery systems: dithranol as a model drug. Eur J Pharm Biopharm 69:935–942. doi:10.1016/j.ejpb.2008.02.003
Murillo-Cremaes N, López-Periago AM, Saurina J et al (2013) Nanostructured silica-based drug delivery vehicles for hydrophobic and moisture sensitive drugs. J Supercrit Fluids 73:34–42. doi:10.1016/j.supflu.2012.11.006
Caputo G (2013) Supercritical fluid adsorption of domperidone on silica aerogel. Adv Chem Eng Sci 03:189–194. doi:10.4236/aces.2013.33024
Díez-Municio M, Montilla A, Herrero M, Olano A, Ibanez E (2011) Supercritical CO2 impregnation of lactulose on chitosan: a comparison between scaffolds and microspheres form. J Supercrit Fluids 57:73–79
Tenorio MJ, Torralvo MJ, Enciso E, Pando C, Renuncio JAR, Cabanas A (2009) Supercritical CO2 as a reaction and impregnation medium in the synthesis of Pd–SiO2 aerogel inverse opals. J Supercrit Fluids 49:369–376. doi:10.1016/j.supflu.2009.03.011
Acknowledgement
The authors wish to acknowledge the Slovenian Research Agency [Grant no.: 1000-11-860046] and University fund Marie Curie ITN project [Grant no.: 316959] for its financial support.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tkalec, G., Pantić, M., Novak, Z. et al. Supercritical impregnation of drugs and supercritical fluid deposition of metals into aerogels. J Mater Sci 50, 1–12 (2015). https://doi.org/10.1007/s10853-014-8626-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10853-014-8626-0
