Journal of Materials Science

, Volume 50, Issue 1, pp 258–267 | Cite as

A procedure for indirect and automatic measurement of prior austenite grain size in bainite/martensite microstructures

  • L. Morales-Rivas
  • V. A. Yardley
  • C. Capdevila
  • C. Garcia-Mateo
  • H. Roelofs
  • F. G. Caballero


An alternative procedure for indirect and automatic measurement of the prior austenite grain size (PAGS) in bainite/martensite is proposed in this work. It consists in the determination of an effective grain size by means of statistical post-processing of electron backscatter diffraction (EBSD) data. The algorithm developed for that purpose, which is available on-line, has been applied to simulated EBSD maps as well as to both nanocrystalline bainitic steel and commercial hot-rolled air-cooled steel with a granular bainitic microstructure. The new proposed method has been proven to be robust, and results are in good agreement with conventional PAGS measurements. The added value of the procedure comes from its simplicity, as no parent reconstruction is involved during the process, and its suitability for low-magnification EBSD maps, thus allowing a large step size and coverage of a substantially broader area of the sample than the previous methods reported.


Austenite Bainite Misorientation Angle Prior Austenite Bainitic Ferrite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Distance-disorientation function


Electron backscatter diffraction


Effective grain size


Kurdjumov–Sachs orientation relationship


Orientation relationship


Prior austenite grain


Prior austenite grain boundary


Prior austenite grain size


Residual sum of squares



The authors gratefully acknowledge the support of the Spanish Ministry of Economy and Competitiveness for funding this research under the contract IPT-2012-0320-420000. L.M.-R. also acknowledges the Spanish Ministry of Economy and Competitiveness for financial support in the form of a PhD research Grant (FPI-Ref. BES-2011-044186).


  1. 1.
    Gladman T (1997) The physical metallurgy of microalloyed steels. Institute of Materials, LondonGoogle Scholar
  2. 2.
    Matsuzaki A, Bhadeshia HKDH (1999) Effect of austenite grain size and bainite morphology on overall kinetics of bainite transformation in steels. Mater Sci Technol 15:518–522CrossRefGoogle Scholar
  3. 3.
    Garcia-Mateo C, Caballero FG, Bhadeshia HKDH (2003) Acceleration of low-temperature bainite. ISIJ Int 43:1821–1825CrossRefGoogle Scholar
  4. 4.
    Garcia-Mateo C, Sourmail T, Caballero FG et al (2014) Nanostructured steel industrialisation: plausible reality. Mater Sci Technol 30:1071–1078CrossRefGoogle Scholar
  5. 5.
    Vander Voort GF (1984) Metallography: principles and practice. McGraw-Hill Book, New YorkGoogle Scholar
  6. 6.
    García De Andrés C, Bartolomé MJ, Capdevila C, San Martín D, Caballero FG, López V (2001) Metallographic techniques for the determination of the austenite grain size in medium-carbon microalloyed steels. Mater Charact 46:389–398CrossRefGoogle Scholar
  7. 7.
    Lozinskii MG (1961) High temperature metallography. Pergamon, Oxford, p 241CrossRefGoogle Scholar
  8. 8.
    Okamoto M, Miyagawa O, Saga T (1966) High temperature microscope observation of the austenite grain size of steels. Trans Jpn Inst Met 7:217–223CrossRefGoogle Scholar
  9. 9.
    Modin H, Modin S (1973) Metallurgical microscopy. Butterworths, London, pp 181–183CrossRefGoogle Scholar
  10. 10.
    Gourgues–Lorenzon AF (2007) Application of electron backscatter diffraction to the study of phase transformations. Int Mater Rev 52(2):65–128CrossRefGoogle Scholar
  11. 11.
    Patala S, Mason JK, Schuh CA (2012) Improved representations of misorientation information for grain boundary science and engineering. Prog Mater Sci 57(8):1383–1425CrossRefGoogle Scholar
  12. 12.
    Bachmann F, Hielscher R, Schaeben H (2010) Texture analysis with MTEX: free and open source software soolbox. Solid State Phenom 160:63–68CrossRefGoogle Scholar
  13. 13.
    Kurdjumow G, Sachs G (1930) Über der Mechanismus der Stahlhärtung (On the mechanism of hardening of steel). Z Physik 64:325–343CrossRefGoogle Scholar
  14. 14.
    Furuhara T, Kawata H, Morito S, Maki T (2006) Crystallography of upper bainite in Fe–Ni–C alloys. Mater Sci Eng A 431:228–236CrossRefGoogle Scholar
  15. 15.
    Nishiyama Z (1934) X-ray investigation of the mechanism of the transformation from face-centred cubic lattice to body-centred cubic. Sci Rep Tohoku Imperial Univ 23:637–664Google Scholar
  16. 16.
    Wassermann G (1935) Über den Mechanismus der α → γ Umwandlung des Eisens (On the mechanism of the α → γ transformation of iron). Mitteilungen aus dem Kaiser Wilhelm Institut für Eisenforschung 17:149–155Google Scholar
  17. 17.
    Germain L, Gey N, Mercier R, Blaineau P, Humbert M (2012) An advanced approach to reconstructing parent orientation maps in the case of approximate orientation relations: Application to steels. Acta Mater 60:4551–4562CrossRefGoogle Scholar
  18. 18.
    Yardley VA, Payton EJ (2014) Austenite–martensite/bainite orientation relationship: characterisation parameters and their application. Mater Sci Technol 30:1125–1130CrossRefGoogle Scholar
  19. 19.
    HKL CHANNEL 5 software, version, 1998-2006 HKL Technology A/S (Oxford Instruments plc, Tubney Woods, Abingdon, Oxon OX13 5QX, UK)Google Scholar
  20. 20.
    Cayron C, Artaud B, Briottet L (2006) Reconstruction of parent grains from EBSD data. Mater Charact 57:386–401CrossRefGoogle Scholar
  21. 21.
    Tari V, Rollett AD, Beladi H (2013) Back calculation of parent austenite orientation using a clustering approach. J Appl Crystallogr 46:210–215CrossRefGoogle Scholar
  22. 22.
    Abbasi M, Nelson TW, Sorensen CD, Wei L (2012) An approach to prior austenite reconstruction. Mater Charact 66:1–8CrossRefGoogle Scholar
  23. 23.
    Miyamoto G, Iwata N, Takayama N, Furuhara T (2010) Mapping the parent austenite orientation reconstructed from the orientation of martensite by EBSD and its application to ausformed martensite. Acta Mater 58:6393–6403CrossRefGoogle Scholar
  24. 24.
    Bernier N, Bracke L, Malet L, Godet S (2014) An alternative to the crystallographic reconstruction of austenite in steels. Mater Charact 89:23–32CrossRefGoogle Scholar
  25. 25.
    Payton EJ, Aghajani A, Otto F, Eggeler G, Yardley VA (2012) On the nature of internal interfaces in a tempered martensite ferritic steel and their evolution during long-term creep. Scr Mater 66:1045–1048. doi: 10.1016/j.scriptamat.2012.02.042 CrossRefGoogle Scholar
  26. 26.
    Jafarian HR, Borhani E, Shibata A, Terada D, Tsuji N (2011) Martensite/austenite interfaces in ultrafine grained Fe-Ni-C alloy. J Mater Sci 46:4216–4220. doi: 10.1007/s10853-010-5018-y CrossRefGoogle Scholar
  27. 27.
    Brahme A, Staraselski Y, Inal K, Mishra RK (2012) Determination of the minimum scan size to obtain representative textures by electron backscatter diffraction. Metall Mater Trans A 43:5298–5307CrossRefGoogle Scholar
  28. 28.
    Beausir B, Fressengeas C, Gurao NP, Toth LS, Suwas S (2009) Spatial correlation in grain misorientation distribution. Acta Mater 57(18):5382–5395CrossRefGoogle Scholar
  29. 29.
    Mackenzie JK (1958) 2nd paper on statistics associated with the random misorientation of cubes. Biometrika 45:229–240CrossRefGoogle Scholar
  30. 30.
    Handscomb DC (1958) On the random misorientation of two cubes. Canad J Math 10:85–88CrossRefGoogle Scholar
  31. 31.
    Caballero FG, Roelofs H, Hasler S et al (2012) Influence of bainite morphology on impact toughness of continuously cooled cementite free bainitic steels. Mater Sci Technol 28:95–102CrossRefGoogle Scholar
  32. 32.
    MATLAB (MathWorks, Inc., Natick, MA, USA)Google Scholar
  33. 33.
    Morales-Rivas L (2013) EBSD Distance-Disorientation Distribution 3D plot, MATLAB Central File Exchange. Retrieved July 15, 2014
  34. 34.
    Bramfitt S (1990) A perspective on the Morphology of Bainite. Metall Trans A 21:817–829CrossRefGoogle Scholar
  35. 35.
    Krauss G, Thompson SW (1995) Ferritic microstructures in continuously cooled low-carbon and ultralow-carbon steels. ISIJ Int 35:937–945CrossRefGoogle Scholar
  36. 36.
    Zajac S, Komenda J, Morris P, Dierickx P, Matera S and Penalba Diaz S (2005) Quantitative structure–property relationship for complex bainitic microstructures. Technical Steel Research, European Commission, contract No 7210-PR/247, Final report. ISBN: 92-894-9206-6. Accessed 8 Sept 2014

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • L. Morales-Rivas
    • 1
  • V. A. Yardley
    • 2
  • C. Capdevila
    • 1
  • C. Garcia-Mateo
    • 1
  • H. Roelofs
    • 3
  • F. G. Caballero
    • 1
  1. 1.National Center for Metallurgical Research (CENIM-CSIC)MadridSpain
  2. 2.Institute for MaterialsRuhr-Universität BochumBochumGermany
  3. 3.R&D, Swiss Steel AGEmmenbrückeSwitzerland

Personalised recommendations