Skip to main content
Log in

Subsolidus phase relations of Li2O–FeO–P2O5 system and the solid solubility of Li1+x Fe1−x PO4 compounds under Ar/H2 atmosphere

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The phase relation of Li2O–FeO–P2O5 ternary system under the 95 %Ar + 5 %H2 atmosphere has been systematically investigated by X-ray diffraction (XRD), and there exist 8 binary compounds, 4 ternary compounds, 2 two-phase regions, and 17 three-phase regions. No other new lithium ferrous phosphates can be existed in the Li2O–FeO–P2O5 ternary system under the 95 %Ar + 5 %H2 atmosphere. In this system, the Li1+x Fe1−x PO4 solid solution phase with the homogeneous range of −0.15 ≤ x ≤ 0.06 is determined. Their corresponding lattice parameters are obtained by the refinement results, and the results show that the lattice parameters (a, b, c, V) vary linearly with the increasing amount of excess Li-ion (x > 0) or with the increasing amount of excess Fe-ion (x < 0). The phase diagram determined in this paper can provide more information about the phase relation of Li2O–FeO–P2O5 ternary system and serve as a guide for the future investigation of lithium iron phosphates in this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Anolini E (2004) LiCoO2: formation, structure, lithium and oxygen nonstoichiometry, electrochemical behaviour and transport properties. Solid State Ionics 170:159–171

    Article  Google Scholar 

  2. Thomas MGSR, David WIF, Goodenough JB (1985) Synthesis and structural characterization of the normal spinel Li[Ni2]O4. Mater Res Bull 20:1137–1146

    Article  Google Scholar 

  3. Kanamura K, Naito H, Yao T, Takehara Z (1996) Structure change of the LiMn2O4 spinel structure induced by extraction of lithium. J Mater Chem 6:33–36

    Article  Google Scholar 

  4. Lu ZH, MacNeil DD, Dahn JR (2001) Layered Li[NixCo1-2xMnx]O2 cathode materials for lithium-Ion batteries. Electrochem Solid-State Lett 4:A200–A203

    Article  Google Scholar 

  5. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194

    Article  Google Scholar 

  6. Chung SY, Bloking JT, Chiang YM (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater 1:123–128

    Article  Google Scholar 

  7. MacNeil DD, Lu ZH, Chen ZH, Dahn JR (2002) A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes. J Power Sources 108:8–14

    Article  Google Scholar 

  8. Takahashi M, Tobishima S, Takei K, Sakurai Y (2002) Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries. Solid State Ionics 148:283–289

    Article  Google Scholar 

  9. Ravet N, Chouinard Y, Magnan JF, Besner S, Gauthier M, Armand M (2001) Electroactivity of natural and synthetic triphylite. J Power Sources 97–98:503–507

    Article  Google Scholar 

  10. Qiu YJ, Geng YH, Yu J, Zuo XB (2014) High-capacity cathode for lithium-ion battery from LiFePO4/(C + Fe2P) composite nanofibers by electrospinning. J Mater Sci 49:504–509. doi:10.1007/s10853-013-7727-5

    Article  Google Scholar 

  11. Wang JJ, Sun XL (2012) Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries. Energy Environ Sci 5:5163–5185

    Article  Google Scholar 

  12. Yi TF, Li XY, Liu HP, Shu J, Zhu YR, Zhu RS (2012) Recent developments in the doping and surface modification of LiFePO4 as cathode material for power lithium ion battery. Ionics 18:529–539

    Article  Google Scholar 

  13. Churikov AV, Ivanishchev AV, Ushakov AV, Gamayunova IM, Leenson IA (2013) Thermodynamics of LiFePO4 solid-phase synthesis using iron (II) oxalate and ammonium dihydrophosphate as precursors. J Chem Eng Data 58:1747–1759

    Article  Google Scholar 

  14. Churikov A, Gribov A, Bobyl A, Kamzin A, Terukov E (2014) Mechanism of LiFePO4 solid-phase synthesis using iron (II) oxalate and ammonium dihydrophosphate as precursors. Ionics 20:1–13

    Article  Google Scholar 

  15. Ong SP, Wang L, Kang B, Ceder G (2008) Li–Fe–P–O2 phase diagram from first principles calculations. Chem Mater 20:1798–1807

    Article  Google Scholar 

  16. Ji LN, Li JB, Chen YQ, Luo J, Liang JK, Rao GH (2009) Subsolidus phase relations of the ZnO-Li2O-P2O5 system. J. Alloys Comp 486:352–356

    Article  Google Scholar 

  17. Tien TY, Hummel FA (1961) Studies in Lithium Oxide Systems: XI, Li2O–B2O3–P2O5. J Am Ceram Soc 44:206–208

    Article  Google Scholar 

  18. Guitel JC, Tordjman I (1976) Structural crystallography and crystal chemistry. Acta Crystallogr B 32:2960–2966

    Article  Google Scholar 

  19. Murashova EV, Chudinova NN (2001) Synthesis and crystal structures of lithium polyphosphates, LiPO3, Li4H(PO3)5, and LiMn(PO3)3. Crystallogr Rep 46:942–947

    Article  Google Scholar 

  20. Ben-Chaabane T, Smiri-Dogguy L, Laligant Y, LeBail A (1998) Li6P6O18: X-ray powder structure determination of lithium cyclohexaphosphate. Eur J Solid State Inorg Chem 35:255–264

    Article  Google Scholar 

  21. Yakubovich OV, Mel’nikov OK (1994) The crystal structure of Li4[P2O7]. Crystallogr Rep 39:737–742

    Google Scholar 

  22. Daidouh A, Veiga ML, Pico C (1997) Martinez-Ripoll, M. A New Polymorph of Li4P2O7. Acta Crystallogr C 53:167–169

    Article  Google Scholar 

  23. Keffer C, Mighell AD, Mauer F, Swanson H, Block S (1967) The Crystal Structure of Twinned Low-Temperature Lithium Phosphate. Inorg Chem 6:119–125

    Article  Google Scholar 

  24. Bondareva OS, Simonov MA, Belov NV (1978) The crystal structure of the synthetic analogue of the lithiophospate gamma-Li3PO4. Soviet Physics–Doklady 23:287–288

    Google Scholar 

  25. Weil M, Glaum R (1998) Crystallization of ultraphosphates via the gas phase. The crystal structures of FeP4011, ZnP4O11 and CdP4O11. Eur J Solid State Inorg Chem 35:495–508

    Article  Google Scholar 

  26. Nord AG, Ericsson T, Werner PE (1990) The crystal structure of iron(II) tetrametaphosphate Fe2P4O12. Zeitschrift fuer Kristallographie 192:83–90

    Google Scholar 

  27. Hoggins JT, Swinnea JS, Steinfink H (1983) Crystal structure of Fe2P2O7. J Solid State Chem 47:278–283

    Article  Google Scholar 

  28. Stefanidis T, Nord AG (1982) The crystal structure of iron(II) diphosphate, Fe2P2O7. Zeitschrift fuer Kristallographie 159:255–264

    Google Scholar 

  29. Parada C, Perles J, Saez-Puche R, Ruiz-Valero C (2003) Snejko N. Crystal growth, structure and magnetic properties of a new polymorph of Fe2P2O7. Chem Mater 15:3347–3351

    Article  Google Scholar 

  30. Kostiner E, Rea JR (1974) Crystal structure of ferrous phosphatefe2(P2O4)2. Inorg Chem 13:2876–2880

    Article  Google Scholar 

  31. Warner JK, Cheetham AK, Nord AG, von Dreele RB, Yethiraj M (1992) Magnetic structure of iron(II) phosphate, sarcopside, Fe3(PO4)2. J Mater Chem 2:191–196

    Article  Google Scholar 

  32. Bouchdoug M, Courtois A, Gerardin R, Steinmetz J, Gleitzer C (1982) Preparation et etude d’un oxyphosphate Fe4(PO4)2O. J Solid State Chem 42:149–157

    Article  Google Scholar 

  33. Dong YZ, Zhao YM, Fu P, Zhou H, Hou XM (2008) Phase relations of Li2O-FeO-B2O3 ternary system and electrochemical properties of LiFeBO3 compound. J. Alloys Comp 461:585–590

    Article  Google Scholar 

  34. Liang ZY, Zhao YM, Ouyang LZ, Dong YZ, Kuang Q, Lin XH, Liu XD, Yan DL (2014) Synthesis of carbon-coated Li3VO4 and its high electrochemical performance as anode material for lithium-ion batteries. J Power Sources 252:244–247

    Article  Google Scholar 

  35. Garcia-Moreno O, Alvarez-Vega M, Garcia-Alvarado F, Garcia-Jaca J, Amores JMG, Sanjuan ML, Amador U (2001) Influence of the structure on the electrochemical performance of lithium transition metal phosphates as cathodic materials in rechargeable lithium batteries: A new high-pressure form of LiMPO4(M)Fe and Ni). Chem Mater 13:1570–1576

    Article  Google Scholar 

  36. Bjoerling CO, Westgren A (1938) Minerals of the Varutrask pegmatite: IX. X-ray studies on triphylite, varulite, and their oxidation products. Geologiska Foereningens i Stockholm Foerhandlingar 60:67–72

    Article  Google Scholar 

  37. Delacourt C, Rodriguez-Carvajal J, Schmitt B, Tarascon JM, Masquelier C (2005) Crystal chemistry of the olivine-type Li x FePO4 system (0 ≤ x ≤ 1) between 25 and 370◦C. Solid State Sci 7:1506–1516

    Article  Google Scholar 

  38. Yakubovich OV, Simonov MA, Belov NV (1977) The crystal structure of a synthetic triphylite LiFe(PO4). Soviet Physics–Doklady 22:347–348

    Google Scholar 

  39. Nishimura H, Nakamura M, Natsui R, Yamada A (2010) New Lithium Iron Pyrophosphate as 3.5 V Class Cathode Material for Lithium Ion Battery. J Am Chem Soc 132:13596–13597

    Article  Google Scholar 

  40. Ramana CV, Ait-Salah A, Julien CM (2006) Structure of LiFe2P3O10 studied by transmission electron microscopy. Mater Sci Eng, B 135:78–81

    Article  Google Scholar 

  41. Genkina EA, Maksimov BA, Kabalov YK, Mel’nikov OE (1983) Crystal structure of Li, Fe metaphosphate LiFeP3O9. Soviet Physics–Doklady 28:426–428

    Google Scholar 

  42. Zhuang VV, Allen JL, Ross PN, Guo J-H, Jow TR (2006) Electronic properties of LiFePO4 and Li doped LiFePO4. ECS Trans 1:69–72

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by NSFC Grant supported through NSFC Committee of China (No. 51172077 & 51372089), the Foundation supported through the Science and Technology Bureau of Guangdong Government (No. S2011020000521), and the foundation of Key Laboratory of Clean Energy Materials of Guangdong Higher Education Institute (No. KLB11003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanming Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Zhao, Y., Dong, Y. et al. Subsolidus phase relations of Li2O–FeO–P2O5 system and the solid solubility of Li1+x Fe1−x PO4 compounds under Ar/H2 atmosphere. J Mater Sci 50, 203–209 (2015). https://doi.org/10.1007/s10853-014-8579-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8579-3

Keywords

Navigation