Skip to main content
Log in

Models of size-dependent nanoparticle melting tested on gold

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Models of melting taking into account the finite material size (as for example the diameter of a spherical nanoparticle) lead to a melting point depression compared to the bulk. Selected approaches are presented in this review and compared to available experimental data on gold. Their sensitivity to thermodynamic parameters such as molar volume, surface energy, and enthalpy of melting is highlighted. Within the given accuracy all models describing the non-surface-melting case seem to be valid for gold. In such cases, the simplest solution should be preferred.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Talapin DV, Rogach AL, Kornowski A, Haase M, Weller H (2001) Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine-oxide-trioctylphosphine mixture. Nano Lett 1(4):207–211

    Article  Google Scholar 

  2. Anoop G, Mark TS, Hartmut W (2009) Luminescent colloidal dispersion of silicon quantum dots from microwave plasma synthesis: exploring the photoluminescence behavior across the visible spectrum. Adv Funct Mater 19(5):696–703

    Article  Google Scholar 

  3. Buffat P, Borel JP (1976) Size effect on the melting temperature of gold particles. Phys Rev A 13:2287

    Article  Google Scholar 

  4. Mei QS, Lu K (2007) Melting and superheating of crystalline solids: from bulk to nanocrystals. Prog Mater Sci 52:1175–1262

    Article  Google Scholar 

  5. Guisbiers G (2012) Review on the analytical models describing melting at the nanoscale. J Nanosci Lett 2:8

    Article  Google Scholar 

  6. Christian JW (2002) The theory of transformations in metals and alloys. Pergamon, Oxford

    Google Scholar 

  7. Pluis B, Frenkel D, van der Veen JF (1990) Surface-induced melting and freezing II. A semi-empirical landau-type model. Surf Sci 239:282–300

    Article  Google Scholar 

  8. Peters KF, Cohen JB, Chung Y-W (1998) Melting of Pb nanocrystals. Phys Rev B 57(21):13430

    Article  Google Scholar 

  9. Rühm A, Reichert H, Donner W, Dosch H, Gruetter C, Bilgram J (2003) Bulk and surface premelting phenomena in α-gallium. Phys Rev B 68:224110

    Article  Google Scholar 

  10. Frenken JWM, Maree PMJ, van der Veen JF (1986) Observation of surface-initiated melting. Phys Rev B 34:7506–7516

    Article  Google Scholar 

  11. Couchman PR, Jesser WA (1977) Comments on melting mechanism for crystalline species. Philos Mag 35:787–790

    Article  Google Scholar 

  12. Tartaglino U, Zykova-Timan T, Ercolessi F, Tosatti E (2005) Material surfaces and nanosystems close to the melting temperature. J Mater Sci 40:2141–2147. doi:10.1007/s10853-005-1905-z

    Article  Google Scholar 

  13. Pawlow P (1909) Über die Abhängigkeit des Schmelzpunktes von der Oberflächenenergie eines Festkörpers. Zeitschrift fuer physikalische Chemie 65:36

    Google Scholar 

  14. Pawlow P (1910) Über den Einfluss der Oberfläche einer festen Phase auf die latente Wärme und die Temperatur des Schmelzens. Colloid Polym Sci 7:37–39

    Google Scholar 

  15. Takagi M (1956) Electron-diffraction study of liquid-solid transition of thin metal films. J Phys Soc Jpn 9:359

    Article  Google Scholar 

  16. Defay R, Prigogine I, Bellemans A, Everett DH (1966) Surface tension and adsorption. Longmans, Green & Co., London

    Google Scholar 

  17. Kaptay G (2011) The Gibbs equation versus the Kelvin and the Gibbs–Thomson equations to describe nucleation and equilibrium of nano-materials. J Nanosci Nanotechnol 12:1–9

    Google Scholar 

  18. Kaptay G (2012) Nano-Calphad: extension of the Calphad method to systems with nano-phases and complexions. J Mater Sci 47:8320–8335. doi:10.1007/s10853-012-6772-9

    Article  Google Scholar 

  19. Lee J, Tanaka T, Lee J, Mori H (2007) Effect of substrates on the melting temperature of gold nanoparticles. Calphad 31:105–111

    Article  Google Scholar 

  20. Reiss H, Wilson IB (1948) The effect of surface on melting point. J Colloid Sci 3:551–561

    Article  Google Scholar 

  21. Curzon AE (1960) The use of electron diffraction in the study of (1) melting and supercooling of thin films; and (2) magnetic crystals. PhD Dissertation, University of London

  22. Hanszen KJ (1960) Theoretische Untersuchungen über den Schmelzpunkt kleiner Kügelchen—ein Beitrag zur Thermodynamik der Grenzflächen. Zeitschrift für Physik 157:523–553

    Article  Google Scholar 

  23. Reiss H, Mirabel P, Whetten RL (1988) Capillarity theory for the “coexistence” of liquid and solid clusters. J Phys Chem 92:7241–7246

    Article  Google Scholar 

  24. Vanfleet RR, Mochel JM (1995) Thermodynamics of melting and freezing in small particles. Surf Sci 341:40–50

    Article  Google Scholar 

  25. Couchman PR, Jesser WA (1977) Thermodynamic theory of size dependence of melting temperature in metals. Nature 269:481–483

    Article  Google Scholar 

  26. Sun CQ, Wang Y, Tay BK, Li S, Huang H, Zhang YB (2002) Correlation between the melting point of a nanosolid and the cohesive energy of a surface atom. J Phys Chem B 106:10701–10705

    Article  Google Scholar 

  27. Sun CQ, Bai HL, Li S, Tay BK, Jiang EY (2004) Size-effect on the electronic structure and the thermal stability of a gold nanosolid. Acta Mater 52:501–505

    Article  Google Scholar 

  28. Sun CQ (2007) Size dependence of nanostructures: Impact of bond order deficiency. Prog Solid State Chem 35:1–159

    Article  Google Scholar 

  29. Pauling L (1947) Atomic radii and interatomic distances in metals. J Am Chem Soc 69:542–553

    Article  Google Scholar 

  30. Goldschmidt VM (1927) Krystallbau und chemische Zusammensetzung. Berichte der deutschen chemischen Gesellschaft (A–B Series) 60:1263–1296

    Article  Google Scholar 

  31. Nanda KK, Sahu SN, Behera SN (2002) Liquid-drop model for the size-dependent melting of low-dimensional systems. Phys Rev A 66:013208

    Article  Google Scholar 

  32. Qi WH, Wang MP, Zhou M, Shen XQ, Zhang XF (2006) Modeling cohesive energy and melting temperature of nanocrystals. J Phys Chem Solids 67:851–855

    Article  Google Scholar 

  33. Sun CQ, Pan LK, Fu YQ, Tay BK, Li S (2003) Size dependence of the 2p-level shift of nanosolid silicon. J Phys Chem B 107:5113–5115

    Article  Google Scholar 

  34. Sun CQ, Bai HL, Tay BK, Li S, Jiang EY (2003) Dimension, strength, and chemical and thermal stability of a single C–C bond in carbon nanotubes. J Phys Chem B 107:7544–7546

    Article  Google Scholar 

  35. Sun CQ, Li CM, Bai HL, Jiang EY (2005) Melting point oscillation of a solid over the whole range of sizes. Nanotechnology 16:1290

    Article  Google Scholar 

  36. Dinsdale AT (1991) SGTE data for pure elements. Calphad 15:317–425

    Article  Google Scholar 

  37. Scientific Group Thermodata Europe (SGTE) (2002) Thermodynamic properties of elements, Ac to C60, ser. Landolt-Boernstein—Group IV physical chemistry, numerical data and functional relationships in science and technology, vol 19A1. Springer, Berlin, ISBN 3540653279

    Google Scholar 

  38. Murr LE (1975) Interfacial phenomena in metal and alloys, vol 8. Addison-Wesley Publishing Company

    Google Scholar 

  39. Sambles JR (1971) An electron microscope study of evaporating gold particles: the Kelvin equation for liquid gold and the lowering of the melting point of solid gold particles. Proc R Soc Lond A (1934–1990) 324(1558):339–351

    Article  Google Scholar 

  40. Lee J, Nakamoto M, Tanaka T (2005) Thermodynamic study on the melting of nanometer-sized gold particles on graphite substrate. J Mater Sci 40(9):2167–2171. doi:10.1007/s10853-005-1927-6

    Article  Google Scholar 

  41. Haynes WM (2010) CRC handbook of chemistry and physics, 91st edn. CRC Press, Boca Raton

    Google Scholar 

  42. Iida T, Guthrie RI (1993) The physical properties of liquid metals. Oxford University Press, New York

    Google Scholar 

  43. Rhee SK (1972) Critical surface energies of Al2O3 and graphite. J Am Ceram Soc 55(6):300–303

    Article  Google Scholar 

  44. Lee J, Tanaka T, Seo K, Hirai N, Lee JG, Mori H (2006) Wetting of Au and Ag particles on monocrystalline graphite substrates. Rare Met 25(5):469–472

    Article  Google Scholar 

  45. Lee J, Ishimura H, Tanaka T (2006) Anisotropy of wetting of molten Au on differently oriented α-Al2O3 single crystals. Scripta Mater 54(7):1369–1373

    Article  Google Scholar 

  46. Pinto A, Pennisi AR, Faraci G, D’Agostino G, Mobilio S, Boscherini F (1995) Evidence for truncated octahedral structures in supported gold clusters. Phys Rev B 51(8):5315–5321

    Article  Google Scholar 

  47. Zhang X, Kuo JL, Gu M, Fan X, Bai P, Song QG, Sun CQ (2010) Local structure relaxation, quantum trap depression, and valence charge polarization induced by the shorter-and-stronger bonds between under-coordinated atoms in gold nanostructures. Nanoscale 2(3):412–417

    Article  Google Scholar 

  48. Dick K, Dhanasekaran T, Zhang Z, Meisel D (2002) Size-dependent melting of silica-encapsulated gold nanoparticles. J Am Chem Soc 124:2312–2317

    Article  Google Scholar 

  49. Sheng HW (1996) Superheating and melting-point depression of Pb nanoparticles embedded in Al matrices. Philos Mag Lett 73:179–186

    Article  Google Scholar 

  50. Chattopadhyay K, Bhattacharya V, Biswas K, Luysberg M, Tillmann K, Weirich T (2008) Melting and solidification of alloys embedded in a matrix at nanoscale. In: EMC 2008 14th European microscopy congress, 1–5 September 2008, Aachen, Germany. Springer, Berlin

  51. Castro T, Reifenberger R, Choi E, Andres RP (1990) Size-dependent melting temperature of individual nanometer-sized metallic clusters. Phys Rev B 42:8548

    Article  Google Scholar 

  52. van Huis MA, Young NP, Pandraud G, Creemer JF, Van maekelbergh D, Kirkland AI, Zandbergen HW (2009) Atomic imaging of phase transitions and morphology transformations in nanocrystals. Adv Mater 21:4992–4995

    Article  Google Scholar 

  53. Eustathopoulos N, Pique D (1980) Calculation of solid–liquid–vapour contact angles for binary metallic systems. Scripta Metall 14:1291–1296

    Article  Google Scholar 

  54. Lee J, Lee J, Tanaka T, Mori H (2009) In-situ atomic-scale observation of meltingpoint suppression in nanometer-sized gold particles. Nanotechnology 20:475706

    Article  Google Scholar 

  55. Proykova A, Berry RS (2006) Insights into phase transitions from phase changes of clusters. J Phys B 39:R167–R202

    Article  Google Scholar 

  56. Berry RS, Boris MS (2009) Phase transitions in various kinds of clusters. Phys Usp 52:137

    Article  Google Scholar 

  57. Bachels T, Guentherodt HJ, Schaefer R (2000) Melting of isolated tin nanoparticles. Phys Rev Lett 85:1250

    Article  Google Scholar 

  58. Ercolessi F, Andreoni W, Tosatti E (1991) Melting of small gold particles: mechanism and size effects. Phys Rev Lett 66:911–914

    Article  Google Scholar 

  59. Koga K, Ikeshoji T, Sugawara KI (2004) Size- and temperature-dependent structural transitions in gold nanoparticles. Phys Rev Lett 92:115507

    Article  Google Scholar 

  60. Wang Y, Teitel S, Dellago C (2005) Melting of icosahedral gold nanoclusters from molecular dynamics simulations. J Chem Phys 122:214722–214816

    Article  Google Scholar 

  61. Cleveland CL, Luedtke WD, Landman U (1999) Melting of gold clusters. Phys Rev B 60:5065–5077

    Article  Google Scholar 

  62. Chushak YG, Bartell LS (2001) Melting and freezing of gold nanoclusters. J Phys Chem B 105:11605–11614

    Article  Google Scholar 

  63. Wang N (2010) Melting, solidification and sintering/coalescence of nanoparticles. PhD Dissertation, Ohio State University

  64. Qi Y, Cagin T, Johnson WL, Goddard WA (2001) Melting and crystallization in Ni nanoclusters: the mesoscale regime. J Chem Phys 115:385–394

    Article  Google Scholar 

  65. Borel JP (1981) Thermodynamical size effect and the structure of metallic clusters. Surf Sci 106:1–9

    Article  Google Scholar 

  66. Krishna Goswami G, Kar Nanda K (2012) Thermodynamic models for the size-dependent melting of nanoparticles: different hypotheses. Curr Nanosci 8:305–311

    Article  Google Scholar 

  67. Leitner J (2011) Melting point of nanoparticles. Chem Listy 105:174–185

    Google Scholar 

  68. Lee J, Ishimura H, Tanaka T (2004) Novel method determining contact angle of liquid Au on solid Al2O3 single crystal (0001) surface at 1373k. In: Umakoshi Y, Fujimoto S (eds) Advanced structural and functional materials design. Proceedings sereis. Materials Science Forum, vol 512, pp 309–312

  69. Farrell HH, Van Siclen CD (2007) Binding energy, vapor pressure, and melting point of semiconductor nanoparticles. J Vac Sci Technol B 25:1441–1447

    Article  Google Scholar 

  70. Qi W, Huang B, Wang M (2009) Bond-length and -energy variation of small gold nanoparticles. J Comput Theor Nanosci 6:635–639

    Article  Google Scholar 

  71. Qi W, Huang B, Wang M (2009) Structure of unsupported small palladium nanoparticles. Nanoscale Res Lett 4:269–273

    Article  Google Scholar 

  72. Allen GL, Bayles RA, Gile WW, Jesser WA (1986) Small particle melting of pure metals. Thin Solid Films 144:297–308

    Article  Google Scholar 

  73. Lai SL, Guo JY, Petrova V, Ramanath G, Allen LH (1996) Size-dependent melting properties of small tin particles: nanocalorimetric measurements. Phys Rev Lett 77:99–102

    Article  Google Scholar 

  74. Xiong S, Qi W, Cheng Y, Huang B, Wang M, Li Y (2011) Universal relation for size dependent thermodynamic properties of metallic nanoparticles. Phys Chem Chem Phys 13:10652–10660

    Article  Google Scholar 

  75. Hultgren R (1973) Selected values of the thermodynamic properties of the elements, 1st edn. American Society for Metals, ASIN B009AJAAEI

  76. Tester JW, Feber RC, Herrick CC (1968) Calorimetric study of liquid gold. J Chem Eng Data 13(3):419–421

    Article  Google Scholar 

  77. Mays CW, Vermaak JS, Kuhlmann-Wilsdorf D (1968) On surface stress and surface tension: II. Determination of the surface stress of gold. Surf Sci 12:134–140

    Article  Google Scholar 

  78. Miller JT, Kropf AJ, Zha Y, Regalbuto JR, Delannoy L, Louis C, Bus E, van Bokhoven JA (2006) The effect of gold particle size on Au–Au bond length and reactivity toward oxygen in supported catalysts. J Catal 240:222–234

    Article  Google Scholar 

  79. Pinto A, Pennisi AR, Faraci G, D’Agostino G, Mobilio S, Boscherini F (1995) Evidence for truncated octahedral structures in supported gold clusters. Phys Rev B 51:5315–5321

    Article  Google Scholar 

  80. Tolman RC (1949) The effect of droplet size on surface tension. J Chem Phys 17:333–337

    Article  Google Scholar 

  81. Kaptay G, Janczak-Rusch J, Pigozzi G, Jeurgens LPH (2014) Theoretical analysis of melting point depression of pure metals in different initial configurations. J Mater Eng Perform 23:1600–1607

    Article  Google Scholar 

  82. Lu K, Sun NX (1997) Grain-boundary enthalpy of nanocrystalline selenium. Philos Mag Lett 75:389–395

    Article  Google Scholar 

  83. Diehm M, Agoston P, Albe K (2012) Size-dependent lattice expansion in nanoparticles: reality or anomaly? Phys Chem Chem Phys 13:2443–2454

    Google Scholar 

  84. Zhang H, Chen B, Banfield JF (2009) The size dependence of the surface free energy of titania nanocrystals. Phys Chem Chem Phys 11:2553–2558

    Article  Google Scholar 

  85. Diehm M (2010) Finite-size effects in oxide nanoparticles. Master’s thesis, TU Darmstadt

  86. Lee J, Nakamoto M, Tanaka T (2005) Thermodynamic study on the melting of nanometer-sized gold particles on graphite substrate. J Mater Sci 40:2167–2171. doi:10.1007/s10853-005-1927-6

    Article  Google Scholar 

  87. Andrievskii R, Khachoyan A (2010) Role of size-dependent effects and interfaces in physicochemical properties of consolidated nanomaterials. Russ J Gen Chem 80:555–566

    Article  Google Scholar 

  88. Xiong S, Qi W, Cheng Y, Huang B, Wang M, Li Y (2011) Modeling size effects on the surface free energy of metallic nanoparticles and nanocavities. Phys Chem Chem Phys 13:10648–10651

    Article  Google Scholar 

  89. Shibuta Y, Suzuki T (2008) A molecular dynamics study of the phase transition in bcc metal nanoparticles. J Chem Phys 129:144102–144110

    Article  Google Scholar 

  90. Tournier RF (2007) Presence of intrinsic growth nuclei in overheated and undercooled liquid elements. Physica B 392:79–91

    Article  Google Scholar 

  91. Tournier RF, Beaugnon E (2009) Texturing by cooling a metallic melt in a magnetic field. Sci Technol Adv Mater 10:014501

    Article  Google Scholar 

  92. Weissmüller J, ller J (2012) Comment on lattice contraction and surface stress of fcc nanocrystals. J Phys Chem B 106:889–890

    Article  Google Scholar 

  93. Murai J, Marukawa T, Mima T, Arai S, Sasaki K, Saka H (2006) Size dependence of the contact angle of liquid clusters of Bi and Sn supported on SiO2, Al2O3, graphite, diamond and AlN. J Mater Sci 41:2723–2727. doi:10.1007/s10853-006-7875-y

    Article  Google Scholar 

  94. Hendy SC (2007) A thermodynamic model for the melting of supported metal nanoparticles. Nanotechnology 18:175703

    Article  Google Scholar 

  95. Kofman R, Cheyssac P, Aouaj A, Lereah Y, Deutscher G, Ben-David T, Penisson JM, Bourret A (1994) Surface melting enhanced by curvature effects. Surf Sci 303:231–246

    Article  Google Scholar 

  96. Sakai H (1996) Surface-induced melting of small particles. Surf Sci 351:285–291

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support of the Deutsche Forschungsgemeinschaft (DFG) within the frame of the Emmy Noether program (GU 993/1-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Guillon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guenther, G., Guillon, O. Models of size-dependent nanoparticle melting tested on gold. J Mater Sci 49, 7915–7932 (2014). https://doi.org/10.1007/s10853-014-8544-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8544-1

Keywords

Navigation