Skip to main content
Log in

Evolution of grain structure in deformed metal-polymer laminates

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The paper examines the roughening along a metal-polymer interface, to find out whether the relevant length scale is on a sub-grain level or on the grain-size level. This is relevant for understanding the possible delamination of a polymer coating on a metallic substrate. Therefore we have investigated the local lattice orientation in heavily strained ferritic steel using electron back-scatter diffraction. From that data we have calculated the components of the local orientation gradient tensor as well as the local Schmid factor for deformation along [100] and [001] on {101} and {112} slip systems. The curvature of the draw-and-redraw steel- polyethylene terephthalate (PET) laminate interface as well as the curvature of the underlying steel lattice was examined in detail. It is concluded that roughening at a sub-grain length scale along the interface is due to plasticity in the interior of the grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Persson BNJ (2006) Contact mechanics for randomly rough surfaces. Surf Sci Rep 61:201–227. doi:10.1016/j.surfrep.2006.04.001

    Article  Google Scholar 

  2. Carbone G, Bottiglione F (2011) Contact mechanics of rough surfaces: a comparison between theories. Meccanica 46:557–565. doi:10.1007/s11012-010-9315-y

    Article  Google Scholar 

  3. Carbone G, Pierro E (2013) A review of adhesion mechanisms of mushroom-shaped microstructured adhesives. Meccanica 48:1819–1833. doi:10.1007/s11012-013-9724-9

    Article  Google Scholar 

  4. Beeck J, Neggers J, Schreurs PJG et al (2014) Quantification of three-dimensional surface deformation using global digital image correlation. Exp Mech 54:557–570. doi:10.1007/s11340-013-9799-1

    Article  Google Scholar 

  5. Stoudt MR, Hubbard JB (2005) Analysis of deformation-induced surface morphologies in steel sheet. Acta Mater 53:4293–4304. doi:10.1016/j.actamat.2005.05.038

    Article  Google Scholar 

  6. Raabe D, Sachtleber M, Weiland H et al (2003) Grain-scale micromechanics of polycrystal surfaces during plastic straining RID A-6470-2009. Acta Mater 51:1539–1560. doi:10.1016/S1359-6454(02)00557-8

    Article  Google Scholar 

  7. Mahmudi R, Mehdizadeh M (1998) Surface roughening during uniaxial and equi-biaxial stretching of 70-30 brass sheets. J Mater Process Technol 80–81:707–712. doi:10.1016/S0924-0136(98)00099-5

    Article  Google Scholar 

  8. Wilson DV, Roberts WT, Rodrigues PMB (1981) Effect of grain anisotropy on limit strains in biaxial stretching: part i. influence of sheet thickness and grain size in weakly textured sheets. Metall Trans A 12:1595–1602. doi:10.1007/BF02643565

    Article  Google Scholar 

  9. Wouters O, Vellinga WP, Van Tijum R, De Hosson JTM (2006) Effects of crystal structure and grain orientation on the roughness of deformed polycrystalline metals. Acta Mater 54:2813–2821. doi:10.1016/j.actamat.2006.02.023

    Article  Google Scholar 

  10. Wouters O, Vellinga WP, Van Tijum R, De Hosson JTM (2005) On the evolution of surface roughness during deformation of polycrystalline aluminum alloys. Acta Mater 53:4043–4050. doi:10.1016/j.actamat.2005.05.007

    Article  Google Scholar 

  11. Mizuno T, Mulki H (1996) Changes in surface texture of zinc-coated steel sheets under plastic deformation. Wear 198:176–184. doi:10.1016/0043-1648(96)06963-3

    Article  Google Scholar 

  12. Zhao Z, Radovitzky R, Cuitiño A (2004) A study of surface roughening in fcc metals using direct numerical simulation. Acta Mater 52:5791–5804. doi:10.1016/j.actamat.2004.08.037

    Article  Google Scholar 

  13. Lee PS, Piehler HR, Adams BL et al (1998) Influence of surface texture on orange peel in aluminum. J Mater Process Technol 80:315–319

    Article  Google Scholar 

  14. Becker R (1998) Effects of strain localization on surface roughening during sheet forming. Acta Metall 46:1075–1457

    Google Scholar 

  15. Wittridge NJ, Knutsen RD (1999) A microtexture based analysis of the surface roughening behaviour of an aluminium alloy during tensile deformation. Mater Sci Eng A 269:205–216. doi:10.1016/S0921-5093(99)00145-8

    Article  Google Scholar 

  16. Wilson DV, Roberts WT, Rodrigues PMB (1981) Effects of grain anisotropy on limit strains in biaxial stretching: part ii. sheets of cubic metals and alloys with well-developed preferred orientations. Metall Trans A 12:1603–1611

    Article  Google Scholar 

  17. Baczynski GJ, Guzzo R, Ball MD, Lloyd DJ (2000) Development of roping in an aluminum automotive alloy AA6111. Acta Mater 48:3361–3376

    Article  Google Scholar 

  18. Faber ET, Vellinga WP, De Hosson JTM (2014) Local delamination on heavily deformed polymer–metal interfaces: evidence from microscopy. J Mater Sci 49:691–700. doi:10.1007/s10853-013-7750-6

    Article  Google Scholar 

  19. Hamelin CJ, Diak BJ, Pilkey AK (2011) Multiscale modelling of the induced plastic anisotropy in bcc metals. Int J Plast 27:1185–1202. doi:10.1016/j.ijplas.2011.01.003

    Article  Google Scholar 

  20. Romanov AE (2003) Importance of disclinations in severe plastically deformed materials. Adv Eng Mater 5:301–307. doi:10.1002/adem.200310087

    Article  Google Scholar 

  21. Alexander GP, Chen BG-G, Matsumoto EA, Kamien RD (2012) Colloquium: disclination loops, point defects, and all that in nematic liquid crystals. Rev Mod Phys 84:497–514. doi:10.1103/RevModPhys.84.497

    Article  Google Scholar 

  22. Pantleon W (2008) Resolving the geometrically necessary dislocation content by conventional electron backscattering diffraction. Scr Mater 58:994–997. doi:10.1016/j.scriptamat.2008.01.050

    Article  Google Scholar 

  23. Wilkinson AJ, Meaden G, Dingley DJ (2006) High-resolution elastic strain measurement from electron backscatter diffraction patterns: new levels of sensitivity. Ultramicroscopy 106:307–313. doi:10.1016/j.ultramic.2005.10.001

    Article  Google Scholar 

  24. Nye J (1953) Some geometrical relations in dislocated crystals. Acta Metall 1:153–162. doi:10.1016/0001-6160(53)90054-6

    Article  Google Scholar 

  25. Canny J (1986) A computational approach to edge-detection. IEEE Trans Pattern Anal Mach Intell 8:679–698

    Article  Google Scholar 

Download references

Acknowledgements

The financial support of Materials innovation institute (M2i), Delft, the Netherlands, under the project number M63.7.09343b is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Th. M. De Hosson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faber, E.T., Velinga, WP. & De Hosson, J.T.M. Evolution of grain structure in deformed metal-polymer laminates. J Mater Sci 49, 8335–8342 (2014). https://doi.org/10.1007/s10853-014-8542-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8542-3

Keywords