Journal of Materials Science

, Volume 49, Issue 22, pp 7870–7882

Al2Mo3O12/polyethylene composites with reduced coefficient of thermal expansion

  • Alexandre Roberto Soares
  • Patricia I. Pontón
  • Lidija Mancic
  • José R. M. d’Almeida
  • Carl P. Romao
  • Mary Anne White
  • Bojan A. Marinkovic
Original Paper

DOI: 10.1007/s10853-014-8498-3

Cite this article as:
Soares, A.R., Pontón, P.I., Mancic, L. et al. J Mater Sci (2014) 49: 7870. doi:10.1007/s10853-014-8498-3

Abstract

Recently, polymer composites reinforced with low fractions of thermomiotic nanoceramics have triggered a lot of research. The efforts have been focused on achieving considerable reduction of the coefficient of thermal expansion (CTE) of polymeric materials without deterioration of other physical properties. In this context, polyethylene (PE) composites reinforced with different loads of Al2Mo3O12 nanofillers (0.5–4 mass %) were fabricated by micro-compounding. To enhance the interfacial interaction between the two components, chemical functionalization of Al2Mo3O12 was performed with vinyltrimethoxysilane (VTMS) prior to micro-compounding. Infrared spectroscopy and thermogravimetry demonstrated the successful grafting of VTMS on the Al2Mo3O12 surface. The composites showed strongly decreased CTEs, up to 46 % reduction for loadings of 4 mass % compared with neat PE, suggesting intimate filler–matrix interactions. The variation of CTEs of the composites in terms of the filler fraction was successfully described by Turner’s model allowing calculation of the bulk modulus of monoclinic Al2Mo3O12 (13.6 ± 2.6 GPa), in agreement with the value obtained by an ultrasonic method. The thermal stability of the composites was improved, although the addition of functionalized fillers decreased the degree of crystallinity of the PE to a small extent. The Young’s modulus and yield strength of the composites increased from 6.6 to 19.1 % and 4.0–6.0 %, respectively, supporting the existence of strong filler–matrix interactions, contributing to an efficient load transfer. Finite element analysis of thermal stresses indicated absence of plastic deformation of the matrix or fracture of the nanofillers, for a 100 K temperature drop.

Supplementary material

10853_2014_8498_MOESM1_ESM.docx (4.2 mb)
Supplementary material 1 (DOCX 4277 kb)

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Alexandre Roberto Soares
    • 1
  • Patricia I. Pontón
    • 2
  • Lidija Mancic
    • 3
  • José R. M. d’Almeida
    • 2
  • Carl P. Romao
    • 4
    • 5
  • Mary Anne White
    • 4
    • 5
    • 6
  • Bojan A. Marinkovic
    • 1
    • 2
  1. 1.Centro Universitário de Volta Redonda – UNIFOAVolta RedondaBrazil
  2. 2.Departamento de Engenharia de MateriaisPontifícia Universidade Católica de Rio de Janeiro – PUC-RioGáveaBrazil
  3. 3.Institute of Technical Sciences of SASABelgradeSerbia
  4. 4.Department of ChemistryDalhousie UniversityHalifaxCanada
  5. 5.Institute for Research in MaterialsDalhousie UniversityHalifaxCanada
  6. 6.Department of Physics and Atmospheric SciencesDalhousie UniversityHalifaxCanada

Personalised recommendations