Skip to main content
Log in

Structural, electronic, and optical properties of orthorhombic and triclinic BiNbO4 determined via DFT calculations

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We performed ab initio calculations using the FPLAW method with the local density approximation (LDA) implemented in the WIEN2 k code for the orthorhombic (α) and triclinic (β) phases of BiNbO4. The modified Becke–Johnson exchange potential (mBJ)-LDA approach was also used to improve the electronic properties. The lattice constants calculated for both structures using the LDA are in good agreement with the experimental values. For the band structure calculations, the mBJ-LDA approach provides reasonable agreement for the band gap value compared with the LDA. The estimated (mBJ)-LDA band gap values are 2.89 eV (3.73 eV) and 2.62 eV (3.15 eV) for the α and β phases of BiNbO4, respectively. Significant optical anisotropy is clearly observed in the visible-light region. We also calculated and evaluated the electron energy loss spectrum for BiNbO4. This work provides the first quantitative theoretical prediction of optical properties and electron energy loss spectra for both the orthorhombic and triclinic phases of BiNbO4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aurivillius B (1951) X-ray Investigations on BiNbO4, BiTaO4 and BiSbO4. Ark Kemi 3:153–161

    Google Scholar 

  2. Keve ET, Skapski AC (1973) The crystal structure of triclinic β-BiNbO4. J Solid State Chem 8:159–165

    Article  Google Scholar 

  3. Roth RS, Waring JL (1962) Phase equilibrium relations in the binary system bismuth sesquioxide-niobium pentoxide. J Res Nat Bur Stand 66A:451–463

    Article  Google Scholar 

  4. Roth RS, Waring JL (1963) Synthesis and stability of Bismutotantalite, Stibiotantalite and chemically similar ABO4 compounds. Am Mineral 48:1348–1356

    Google Scholar 

  5. Subramaian MA, Calabrese JC (1993) Crystal structure of the below temperature form of Bismuth Niobium oxide [ct-BiNbO4 ]. Mater Res Bull 28:523–529

    Article  Google Scholar 

  6. Choi W, Hong SJ, Chang YS, Cho Y (2000) Photocatalytic degradation of polychlorinated dibenzo-p-dioxins on Tio2 film under UV or solar light irradiation. Environ Sci Technol 34:4810–4815

    Article  Google Scholar 

  7. Kudo A (2007) Photocatalysis and solar hydrogen production. Pure Appl Chem 79:1917–1927

    Google Scholar 

  8. Zhu J, Zach M (2009) Nanostructured materials for photocatalytic hydrogen production. Curr Opin Colloid Interface Sci 14:260–269

    Article  Google Scholar 

  9. Hernandez-Alonso MD, Fresno F, Suarez S, Coronado JM (2009) Development of alternative photocatalysts to TiO2: challenges and opportunities. Energy Environ Sci 2:1231–1257

    Article  Google Scholar 

  10. Zhang J, Cui H, Wang B, Li C, Zhai J, Li Q (2013) Fly ash cenospheres supported visible-light-driven BiVO4 photocatalyst: synthesis, characterization and photocatalytic application. Chem Eng J 223:737–746

    Article  Google Scholar 

  11. Kohtani S, Makino S, Kudo A, Tokumura K, Ishigaki Y, Matsunaga T, Nikaido O, Hayakawa K, Nakagaki R (2002) Photocatalytic degradation of 4-n-Nonylphenol under irradiation from solar simulator: comparison between BiVO4 and TiO2 photocatalysts. Chem Lett 31:660–661

    Article  Google Scholar 

  12. Zhang A, Zhang J, Cui N, Tie X, An Y, Li L (2009) Effects of pH on hydrothermal synthesis and characterization of visible-light-driven BiVO4 photocatalyst. J Mol Catal A 304:28–32

    Article  Google Scholar 

  13. Guo Y, Yang X, Ma F, Li K, Xu L, Yuan X, Guo Y (2010) Additive-free controllable fabrication of bismuth vanadates and their photocatalytic activity toward dye degradation. Appl Surf Sci 256:2215–2222

    Article  Google Scholar 

  14. Fu HB, Pan CS, Yao WQ, Zhu YF (2005) Visible-light-induced degradation of rhodamine B by nanosized BI2WO6. J Phys Chem B 109:22432–22439

    Article  Google Scholar 

  15. Kudo A, Omori K, Kato H (1999) A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J Am Chem Soc 121:11459–11467

    Article  Google Scholar 

  16. Pan C, Zhu Y (2010) New type of BiPO4 oxy-acid salt photocatalyst with high photocatalytic activity on degradation of dye. Environ Sci Technol 44:5570–5574

    Article  Google Scholar 

  17. Pan C, Zhu Y (2011) Size-controlled synthesis of BiPO4 nanocrystals for enhanced photocatalytic performance. J Mater Chem 21:4235–4241

    Article  Google Scholar 

  18. Yin WZ, Wang WZ, Sun SM (2010) Photocatalytic degradation of phenol over cage-like Bi2MoO6 hollow spheres under visible-light irradiation. Catal Commun 11:647–650

    Article  Google Scholar 

  19. Muktha B, Darriet J, Madras G, Row TNG (2006) Crystal structures and photocatalysis of the triclinic polymorphs of BiNbO4 and BiTaO4. J Solid State Chem 179:3919–3925

    Article  Google Scholar 

  20. Dunkle SS, Suslick KS (2009) Photodegradation of BiNbO4 powder during photocatalytic reactions. J Phys Chem Lett C 113:10341–10345

    Article  Google Scholar 

  21. Lee CY, Macquart R, Zhou Q, Kennedy BJ (2003) Structural and spectroscopic studies of BiTa1−xNbxO4. J Solid State Chem 174:310–318

    Article  Google Scholar 

  22. Zou Z, Ye J, Sayama K, Arakawa H (2001) Photocatalytic and photophysical properties of a novel series of solid photocatalysts, BiTa1−xNbxO4 (0⩽x⩽1). Chem Phys Lett 343:303–308

    Article  Google Scholar 

  23. Zou Z, Arakawa H, Ye J (2002) Substitution effect of Ta5+ by Nb5+ on photocatalytic, photophysical, and structural properties of BiTa1-xNbxO4 (0 ≤ x ≤ 1.0). J Mater Res 17:1446–1454

    Article  Google Scholar 

  24. Zou Z, Ye JH, Arakawa H (2001) Optical and structural properties of the BiTa1−xNbxO4 (0 ≤ x ≤ 1) compounds. Solid State Commun 119:471–475

    Article  Google Scholar 

  25. Ullah R, Sun H, Ang HM, Tadé MO, Wang S (2012) Photocatalytic oxidation of water and air contaminants with metal doped BiTaO4 irradiated with visible light. Catal Today 192:203–212

    Article  Google Scholar 

  26. Fan J, Hu XY, Xie ZG, Zhang KL, Wang JJ (2012) Photocatalytic degradation of azo dye by novel Bi-based photocatalyst Bi4TaO8I under visible-light irradiation. Chem Eng J 179:44–51

    Article  Google Scholar 

  27. Xu YS, Zhang WD (2013) Anion exchange strategy for construction of sesame-biscuit-like Bi2O2CO3/Bi2MoO6 nanocomposites with enhanced photocatalytic activity. Appl Catal B 140–141:306–316

    Article  Google Scholar 

  28. Zhang KL, Liu CM, Huang FQ, Zheng C, Wang WD (2006) Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Appl Catal B 68:125–129

    Article  Google Scholar 

  29. Wang W, Huang F, Lin X (2007) xBiOI–(1 − x)BiOCl as efficient visible-light-driven photocatalysts. Scr Mater 56:669–672

    Article  Google Scholar 

  30. Wang W, Huang F, Lin X, Yang J (2008) Visible-light-responsive photocatalysts xBiOBr–(1 − x)BiOI. Catal Commun 9:8–12

    Article  Google Scholar 

  31. Henle J, Simon P, Frenzel A, Scholz S, Kaskel S (2007) Nanosized BiOX (X = Cl, Br, I) particles synthesized in reverse microemulsions. Chem Mater 19:366–373

    Article  Google Scholar 

  32. Lin X, Shan Z, Li K, Wang W, Yang J, Huang F (2007) Photocatalytic activity of a novel Bi-based oxychloride catalyst Na0.5Bi1.5O2Cl. Solid State Sci 9:944–949

    Article  Google Scholar 

  33. Zhai HF, Li AD, Kong JZ, Li XF, Zhao J, Guo BL, Yin J, Li Z (2013) Preparation and visible-light photocatalytic properties of BiNbO4 and BiTaO4 by a citrate method. J Solid State Chem 202:6–14

    Article  Google Scholar 

  34. Kagata H, Inoue T, Kato J, Kameyama I (1992) Low-fire bismuth-based dielectric ceramics for microwave use. Jpn J Appl Phys 31:3152–3155

    Article  Google Scholar 

  35. Choi W, Kim KY, Moon MR, Bae KS (1998) Effects of Nd2O3 on the microwave dielectric properties of BiNbO4 ceramics. J Mater Res 13:2945–2949

    Article  Google Scholar 

  36. Huang CL, Weng MH, Wu CC (2000) The microwave dielectric properties and the microstructures of la2o3-modified BINBO4 ceramics. Jpn J Appl Phys 39:3506–3510

    Article  Google Scholar 

  37. Tzou WC, Yang CF, Chen YC, Cheng PS (2000) Improvements in the sintering and microwave properties of BiNbO4 microwave ceramics by V2O5 addition. J Eur Ceram Soc 20:991–996

    Article  Google Scholar 

  38. Wang N, Zhao MY, Yin ZW, Li W (2003) Low-temperature synthesis of β-BiNbO4 powder by citrate sol–gel method. Mater Lett 57:4009–4013

    Article  Google Scholar 

  39. Wang N, Zhao MY, Yin ZW, Li W (2004) Effects of complex substitution of La and Nd for Bi on the microwave dielectric properties of BiNbO4 ceramics. Mater Res Bull 39:439–448

    Article  Google Scholar 

  40. Zhou D, Wang H, Yao X, Wei X, Xiang F, Pang L (2007) Phase transformation in ceramics. Appl Phys Lett 90:172910–172910–172910–172913

    Google Scholar 

  41. Xu C, He D, Liu C, Wang H, Zhang L, Wang P, Yin S (2013) High pressure and high temperature study the phase transitions of BiNbO4. Solid State Commun 156:21–24

    Article  Google Scholar 

  42. Lai K, Zhu Y, Dai Y, Huang B (2012) Intrinsic defect in BiNbO4: a density functional theory study. J Appl Phys 112:043706–043706–043706–043709

    Google Scholar 

  43. Nisar J, Wang BC, Pathak B, Kang TW, Ahuja R (2011) Mo- and N-doped BiNbO4 for photocatalysis applications. Appl Phys Lett 99: 051909–051909-3

  44. Wang BC, Nisar J, Pathak B, Kang TW, Ahuja R (2012) Band gap engineering in BiNbO4 for visible-light photocatalysis. Appl Phys Lett 100:182102–182102–182102–182104

    Article  Google Scholar 

  45. Wong KM, Alay-e-Abbas SM, Shaukat A, Fang Y, Lei Y (2013) First-principles investigation of the size-dependent structural stability and electronic properties of O-vacancies at the ZnO polar and non-polar surfaces. J Appl Phys 113:014304–014304-11

  46. Wong KM, Alay-e-Abbas, Fang Y, Shaukat A, Lei Y (2013) Spatial distribution of neutral oxygen vacancies on ZnO nanowire surfaces: an investigation combining confocal microscopy and first principles calculations. J Appl Phys 114:034901–034901-10

  47. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244–13249

    Article  Google Scholar 

  48. Becke AD, Johnson ER (2006) A simple effective potential for exchange. J Chem Phys 124:221101–221101–221101–221104

    Article  Google Scholar 

  49. Kuzmin A, Kalinko A, Evarestov RA (2013) Ab initio LCAO study of the atomic, electronic and magnetic structures and the lattice dynamics of triclinic CuWO4. Acta Mater 61:371–378

    Article  Google Scholar 

  50. Kubelka P, Munk F (1931) Ein Beitrag zur Optik Der Farban Striche. Z Tech Phys 12:593–603

    Google Scholar 

  51. Wiegel M, Middel W, Blasse G (1995) Influence of ns2 ions on the luminescence of niobates and tantalates. J Mater Chem 5:981–983

    Article  Google Scholar 

  52. Li AD, Zhai HF, Kong JZ, Wu D (2010) Ferroelectric and photocatalytical properties of ta-based and nb-based oxide ceramics and powders from environmentally friendly water-soluble tantalum and niobium precursors. Mater Sci Forum 654–656:2029–2032

    Article  Google Scholar 

  53. Popolitov VI, Lobache AN, Peskin VF (1982) Antiferroelectrics, ferroelectrics and pyroelectrics of a stibiotantalite structure. Ferroelectrics 40:9–16

    Article  Google Scholar 

  54. Tsujimi Y, Jangx MS, Yu YS, Yagi T (1994) The 90° brillouin scattering in β-BiNbO4 single crystal. Ferroelectr Lett 17:33–39

    Article  Google Scholar 

  55. Haddou A, Khachai H, Khenata R, Litimein F, Bouhemadou A, Murtaza G, Alahmed ZA, Bin-Omran S, Abbar B (2013) Elastic, optoelectronic, and thermal properties of cubic CSi2N4: an ab initio study. J Mater Sci 48:8235–8243

    Article  Google Scholar 

Download references

Acknowledgements

R. K. and S. B.O acknowledge support from the National Plan for Science, Technology and Innovation under research project No. 11-NAN1465-02. A. H. R. developed results within the CENTEM project, reg. no. CZ.1.05/2.1.00/03.0088, co-funded by the ERDF as part of the Ministry of Education, Youth and Sports OPRDI program. S.K.G. acknowledges support from the Fulbright-Nehru Postdoctoral Research Fellowship and Department of Science and Technology (DST), Govt. of India. P.K.J. acknowledges the University Grants Commission (UGC) and the Department of Science and Technology (DST), Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Murtaza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litimein, F., Khenata, R., Gupta, S.K. et al. Structural, electronic, and optical properties of orthorhombic and triclinic BiNbO4 determined via DFT calculations. J Mater Sci 49, 7809–7818 (2014). https://doi.org/10.1007/s10853-014-8491-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8491-x

Keywords

Navigation