Skip to main content
Log in

Rheological and dynamic mechanical properties of polymer-bonded magnets based on Sm2Co17 and polyamide-12

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The rheological and dynamic mechanical properties of polymer-based composites of Sm2Co17 and polyamide-12 with different particle loadings, sizes, and surface treatments are reported. Sm2Co17 particles were surface-treated with three different silanes: 3-glycidoxy(propyl)trimethoxysilane, 3-amino(propyl)trimethoxysilane (APTMS), and methyltrimethoxysilane (MTMS). It was shown, for the composites with untreated particles, that the viscosity and storage modulus increased with increasing filler content (0–60 vol%) and decreasing filler particle size. In addition, the glass transition temperature increased significantly and the damping decreased with increasing filler content. Of the silanes, the MTMS, which yielded only a thin surface layer, had in general the least effect on the rheological properties of the composite. The composite containing the APTMS-coated filler showed the highest storage modulus. The results give new insights on how to prepare polymer-bonded magnets with optimal process conditions (rheology) and dynamic mechanical properties, by varying the amount of particles, their size, and surface treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Otaigbe JU, Xiao J, Kim H, Constantinidis S (1999) Influence of filler surface treatments on processability and properties of polymer-bonded Nd–Fe–B magnets. J Mater Sci Lett 18:329–332

    Article  Google Scholar 

  2. Ma BM, Herchenroderer JW, Smith B, Suda M, Brown DN, Chen Z (2002) Recent development in bonded NdFeB magnets. J Magn Magn Mater 239:418–423

    Article  Google Scholar 

  3. Hamano M (1995) Overview and outlook of bonded magnets in Japan. Jpn J Alloy Compd 222:8–12

    Article  Google Scholar 

  4. Saini DR, Shenoy AV, Nadkarni VM (1984) Dynamic mechanical properties of highly loaded ferrite-filled thermoplastic elastomer. J Appl Polym Sci 29:4123–4143

    Article  Google Scholar 

  5. Shenoy AV (1999) Rheology of filled polymer systems. Kluwer, Dordrecht

    Book  Google Scholar 

  6. Yudin VE, Otaigbe JU, Svetlichnyi VM, Kortykova EN, Almjasheva OV (2008) Dynamic mechanical behavior of filled polyethylenes and model composites. Express Polym Lett 2:485–493

    Article  Google Scholar 

  7. Otaigbe JU, Kim HS, Xiao J (1999) Effect of coupling agent and filler particle size on melt rheology of polymer-bonded Nd–Fe–B Magnets. Polym Compos 20:697–704

    Article  Google Scholar 

  8. Kim S, Kim H-J (2003) Curing behavior and viscoelastic properties of pine and wattle tannin-based adhesives studied by dynamic mechanical thermal analysis and FT-IR-ATR spectroscopy. J Adhes Sci Technol 17:1369–1383

    Article  Google Scholar 

  9. Qadeer MI, Azhdar B, Hedenqvist MS, Savage SJ (2013) Improved oxidation resistance of Sm–Co magnetic alloy powders by silanisation. Prog Org Coat 76:94–100

    Article  Google Scholar 

  10. Qadeer MI, Azhdar B, Hedenqvist MS, Savage SJ (2012) Anomalous high temperature oxidation of Sm2(Fe Co, Cu, Zr)17 particles. Corros Sci 65:453–460

    Article  Google Scholar 

  11. Qadeer MI, Savage SJ, Hedenqvist MS (2013) High temperature magnetic properties of Sm–Co and Sm–Co/polyamide 12 materials; effects of temperature, particle size and silanization. J Mater Sci 48:8163–8170. doi:10.1007/s10853-013-7629-6

    Article  Google Scholar 

  12. Krook M, Gällstedt M, Hedenqvist MS (2005) A study on montmorillonite/polyethylene nanocomposite extrusion-coated paperboard. Packag Technol Sci 18:11–20

    Article  Google Scholar 

  13. Lobe VM, White JL (1979) An experimental study of the influence of carbon black on the rheological properties of a polystyrene melt. Polym Eng Sci 19:617–624

    Article  Google Scholar 

  14. Minagawa N, White JL (1976) The influence of titanium dioxide on the rheological and extrusion properties of polymer melts. J Appl Polym Sci 20:501–523

    Article  Google Scholar 

  15. Farris RJ (1968) Prediction of the viscosity of multimodal suspensions from unimodal viscosity data. Trans Soc Rheol 12:281–301

    Article  Google Scholar 

  16. Van Krevelen DW (1976) Properties of polymers, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  17. Hansen CM (2000) Hansen solubility parameters. CRC, Boca Raton

    Google Scholar 

  18. Hornsby PR (1999) Rheology, compounding and processing of filled thermoplastics. Adv Polym Sci 139:155–217

    Article  Google Scholar 

  19. Hornsby PR, Mthupha A (1994) Rheological characterization of polypropylene filled with magnesium hydroxide. J Mater Sci 29:5293–5301. doi:10.1007/BF01171538

    Article  Google Scholar 

  20. Bomal Y, Godard P (1996) Melt viscosity of calcium-carbonate-filled low density polyethylene: influence of matrix-filler and particle–particle interactions. Polym Eng Sci 36:237–243

    Article  Google Scholar 

  21. Rahail Parvaiz M, Mahanwar PA, Mohanty S, Nayak Sanjay KJ (2010) Morphological, mechanical, thermal, electrical and rheological properties of polycarbonate composites reinforced with surfaces modified mica. Miner Mater Charact Eng 9:985–996

    Google Scholar 

  22. Chen X, Yu J, Guo S (2006) Structure and properties of polypropylene composites filled with magnesium hydroxide. J Appl Polym Sci 102:4943–4951

    Article  Google Scholar 

  23. Osman MA, Atallah A, Schweizer T, Öttinger HC (2004) Particle–particle and particle–matrix interactions in calcite filled high-density polyethylene—steady shear. J Rheol 48:1167–1184

    Article  Google Scholar 

  24. Osman MA, Atallah A (2005) Interparticle and particle–matrix interactions in polyethylene reinforcement and viscoelasticity. Polymer 46:9476–9488

    Article  Google Scholar 

  25. Iisaka K, Shibayama K (1978) Effect of filler particle size on dynamic mechanical properties of poly(methyl methacrylate). J Appl Polym Sci 22:1321–1330

    Article  Google Scholar 

  26. Robertsson CG, Lin CJ, Rackaitis M, Roland CM (2008) Influence of particle size and polymer-filler coupling on viscoelastic glass transition of particle-reinforced polymers. Macromolecules 41:2727–2731

    Article  Google Scholar 

  27. Liang J-Z (2010) Predictions of storage modulus of glass bead-filled low-density-polyethylene composites. Mater Sci Appl 1:343–349

    Google Scholar 

  28. Huang R, Xu X, Lee S, Zhang Y, Kim B-J, Wu Q (2013) High density polyethylene composites reinforced with hybrid inorganic fillers: morphology, mechanical and thermal expansion performance. Materials 6:4122–4138

    Article  Google Scholar 

  29. Chacko VP, Karasz FE, Farris RJ (1982) Dynamic mechanical behavior of filled polyethylenes and model composites. Polym Eng Sci 22:968–974

    Article  Google Scholar 

  30. Ziegel KD, Romanov A (1973) Modulus reinforcement in elastomer composites. I. Inorganic fillers. J Appl Polym Sci 17:1119–1131

    Article  Google Scholar 

  31. www.magnete.de. Accessed 02 Jul 2014

  32. John MJ, Anandjiwala RD (2009) Characterization of viscoelastic properties of flax reinforced polypropylene composites. In: Proceedings of ICCM-17, Edinburgh, 2009

  33. Lewis TB, Nielsen LE (1970) Dynamic mechanical properties of particulate-filled composites. J Appl Polym Sci 14:1449–1471

    Article  Google Scholar 

  34. Cousin P, Smith P (1994) Dynamic mechanical properties of sulfonated polystyrene/alumina composites. J Polym Sci B 32:459–468

    Article  Google Scholar 

  35. Amdouni N, Sautereau H, Gerard JF (1992) Epoxy composites based on glass beads. I. Viscoelastic properties. J Appl Polym Sci 45:1799–1810

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Hedenqvist.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1042 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qadeer, M.I., Savage, S.J., Gedde, U.W. et al. Rheological and dynamic mechanical properties of polymer-bonded magnets based on Sm2Co17 and polyamide-12. J Mater Sci 49, 7529–7538 (2014). https://doi.org/10.1007/s10853-014-8460-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8460-4

Keywords

Navigation