Journal of Materials Science

, Volume 49, Issue 21, pp 7425–7436 | Cite as

Secondary crystalline phases identification in Cu\(_2\)ZnSnSe\(_4\) thin films: contributions from Raman scattering and photoluminescence

  • Pedro M. P. Salomé
  • Paulo A. Fernandes
  • Joaquim P. Leitão
  • Marta G. Sousa
  • Jennifer P. Teixeira
  • António F. da Cunha


In this work, we present the Raman peak positions of the quaternary pure selenide compound Cu\(_2\)ZnSnSe\(_4\) (CZTSe) and related secondary phases that were grown and studied under the same conditions. A vast discussion about the position of the X-ray diffraction (XRD) reflections of these compounds is presented. It is known that by using XRD only, CZTSe can be identified but nothing can be said about the presence of some secondary phases. Thin films of CZTSe, Cu\(_2\)SnSe\(_3\), ZnSe, SnSe, SnSe\(_2\), MoSe\(_2\) and a-Se were grown, which allowed their investigation by Raman spectroscopy (RS). Here we present all the Raman spectra of these phases and discuss the similarities with the spectra of CZTSe. The effective analysis depth for the common back-scattering geometry commonly used in RS measurements, as well as the laser penetration depth for photoluminescence (PL) were estimated for different wavelength values. The observed asymmetric PL band on a CZTSe film is compatible with the presence of CZTSe single-phase and is discussed in the scope of the fluctuating potentials' model. The estimated bandgap energy is close to the values obtained from absorption measurements. In general, the phase identification of CZTSe benefits from the contributions of RS and PL along with the XRD discussion.


ZnSe Bandgap Energy Secondary Phasis Power Conversion Efficiency Raman Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the financial support of the following projects PTDC/CTM-MET-113486/2009, PEst-C/CT-M/LA0025/2011, RECI/FIS-NAN/0183/2012 (COMPETE: FCOMP-01-0124-FEDER-027494) from the Fundaç ao para a Ciência e Tecno-logia.


  1. 1.
    Wang W, Winkler MT, Gunawan O, Gokmen T, Todorov TK, Zhu Y, Mitzi DB (2013) Device characteristics of cztsse thin-film solar cells with 12.6 % efficiency. Adv Energy Mater 4(7). doi: 10.1002/aenm.201301465
  2. 2.
    Shin B, Gunawan O, Zhu Y, Bojarczuk AN, Chey S, Guha S (2013) hin film solar cell with 8.4 power conversion efficiency using an earth-abundant Cu\(_2\)ZnSnS\(_4\) absorber. Prog Photovolt Res Appl 21(1):72–76CrossRefGoogle Scholar
  3. 3.
    IMEC-PressRelease-03/07/2013Google Scholar
  4. 4.
    Kato T, Hiroi H, Sakai N, Muraoka S, Sugimoto H (2012) Characterization of front and back interfaces on Cu\(_2\)ZnSnS\(_4\) thin-film solar cells. In: 27th European photovoltaic solar energy conference and exhibition, pp 2236–2239Google Scholar
  5. 5.
    Tian Q, Xu XF, Han L, Tang M, Zou R, Chen Z, Muhuo Y, Yang J, Hu J (2012) Hydrophilic Cu\(_2\)ZnSnS\(_4\) nanocrystals for printing flexible, low-cost and environmentally friendly solar cells. CrystEngComm 14:3847–3850CrossRefGoogle Scholar
  6. 6.
    Guo L, Zhu Y, Gunawan O, Tayfun G, Deline VR, Ahmed S, Romankiw LT, Deligianni H (2014) Electrodeposited Cu\(_2\)ZnSnSe\(_4\) thin film solar cell with 7 % power conversion efficiency. Prog Photovolt Res Appl 22(1):58–68CrossRefGoogle Scholar
  7. 7.
    Hsu C-J, Duan H-S, Yang W, Zhou H, Yang Y (2013) Benign solutions and innovative sequential annealing processes for high performance Cu\(_2\)ZnSn(Se,S)\(_4\) photovoltaics. Adv Energy MaterGoogle Scholar
  8. 8.
    Hsu W-C, Repins I, Beall C, DeHart C, To B, Yang W, Yang Y, Noufi R (2014) Growth mechanisms of co-evaporated kesterite: a comparison of Cu-rich and Zn-rich composition paths. Prog Photovolt Res Appl 22(1):35–43CrossRefGoogle Scholar
  9. 9.
    Li JV, Kuciauskas D, Young MR, Repins IL (2013) Effects of sodium incorporation in co-evaporated Cu\(_2\)ZnSnSe\(_4\) thin-film solar cells. Appl Phys Lett 102(16):163905CrossRefGoogle Scholar
  10. 10.
    Li Y, Han Q, Kim TW, Shi W (2014) The optical influence of na on Cu\(_2\)ZnSnSe\(_4\) films deposited with na-containing sol–gel precursor. J Sol–Gel Sci Technol 69(2):260–265CrossRefGoogle Scholar
  11. 11.
    Li JV, Kuciauskas D, Young MR, Repins IL (2013) Erratum: effects of sodium incorporation in co-evaporated Cu\(_2\)ZnSnSe\(_4\) thin-film solar cells [appl. phys. lett. 102, 163905 (2013)]. Appl Phy Lett 103(2):029901Google Scholar
  12. 12.
    Fella CM, Uhl AR, Romanyuk YE, Tiwari AN (2012) Cu\(_2\)ZnSnSe\(_4\) absorbers processed from solution deposited metal salt precursors under different selenization conditions. Phys Status Solid A 209(6):1043–1048Google Scholar
  13. 13.
    Sarswat PK, Free ML (2014) Utility of by-product quantum dots obtained during synthesis of Cu\(_2\)ZnSnS\(_4\) colloidal ink. Ceram Int 40(1A):859–869Google Scholar
  14. 14.
    Shavel A, Arbiol J, Cabot A (2010) Synthesis of quaternary chalcogenide nanocrystals: stannite Cu2Zn(x)Sn(y)Se(1+x+2y). J Am Chem Soc 132(13):4514–4515CrossRefGoogle Scholar
  15. 15.
    Ford GM, Qijie G, Rakesh A, Hillhouse HW (2011) Earth abundant element Cu2Zn(Sn1−xGex)S4 nanocrystals for tunable band gap solar cells: 6.8 % efficient device fabrication. Chem Mater 23(10):2626–2629Google Scholar
  16. 16.
    Haas W, Rath T, Pein A, Rattenberger J, Trimmel G, Hofer F (2011) The stoichiometry of single nanoparticles of copper zinc tin selenide. Chem Commun 47:2050–2052CrossRefGoogle Scholar
  17. 17.
    Cao Y, Denny MS, Caspar JV, Farneth WE, Guo Q, Ionkin AS, Johnson LK, Lu M, Irina M, Radu D, Rosenfeld HD, Choudhury KR, Wu W (2012) High-efficiency solution-processed Cu2ZnSn(S,Se)4 thin-film solar cells prepared from binary and ternary nanoparticles. J Am Chem Soc 134(38):15644–15647Google Scholar
  18. 18.
    Du Y-F, Fan J-Q, Zhou W-H, Zhou Z-J, Jiao J, Wu S-X (2012) One-step synthesis of stoichiometric Cu\(_2\)ZnSnSe\(_4\) as counter electrode for dye-sensitized solar cells. ACS Appl Mater Interfaces 4(3):1796–1802CrossRefGoogle Scholar
  19. 19.
    Rath T, Haas W, Pein A, Saf R, Maier E, Kunert B, Hofer F, Resel R, Trimmel G (2012) Synthesis and characterization of copper zinc tin chalcogenide nanoparticles: influence of reactants on the chemical composition. Solar Energy Mater Solar Cells 101:87–94CrossRefGoogle Scholar
  20. 20.
    Shi L, Li Q (2011) Thickness tunable Cu\(_2\)ZnSnSe\(_4\) nanosheets. CrystEngComm 13:6507–6510CrossRefGoogle Scholar
  21. 21.
    Wang K-C , Chen P, Tseng C-M (2013) Facile one-pot synthesis of Cu\(_2\)ZnSnS\(_4\) quaternary nanoparticles using a microwave-assisted method. CrystEngComm 15:9863–9868CrossRefGoogle Scholar
  22. 22.
    Miskin CK, Carter NJ, Yang W-C, Hages CJ, Stach E, Agrawal R (2013) High efficiency Cu\(_2\)ZnSnS\(_4\) nanocrystal ink solar cells through improved nanoparticle synthesis and selenization. In: 2013 IEEE 39th photovoltaic specialists conference (PVSC), pp 0034–0037Google Scholar
  23. 23.
    Miskin CK, Yang W-C, Hages CJ, Carter NJ, Joglekar CS, Stach EA, Agrawal R (2014) 9.0 % efficient Cu2ZnSn(S,Se)4 solar cells from selenized nanoparticle inks. Prog Photovolt Res ApplGoogle Scholar
  24. 24.
    Wilman S, Shigeru I, Takashi H, Michio M (2013) Fabrication of Cu\(_2\)ZnSnSe\(_4\) thin films from an electrodeposited Cu–Zn–Sn–Se/Cu–Sn–Se bilayer. Phys Status Solid C 10(7–8):1062–1066Google Scholar
  25. 25.
    Ikeda S, Septina W, Lin Yixin, Kyoraiseki A, Harada T, Matsumura M (2013) Electrochemical synthesis of Cu\(_2\)ZnSnS\(_4\) and Cu\(_2\)ZnSnSe\(_4\) thin films for solar cells. In: 2013 international renewable and sustainable energy conference (IRSEC), pp 1–4, March 2013Google Scholar
  26. 26.
    Altosaar M, Raudoja J, Timmo K, Danilson M, Grossberg M, Krustok J, Mellikov E (2008) Cu2Zn1−xCdxSn(Se1−ySy)4 solid solutions as absorber materials for solar cells. Phys Status Solid A 205(1):167–170Google Scholar
  27. 27.
    Fontané X, Calvo-Barrio L, Izquierdo-Roca V, Saucedo E, Pérez-Rodriguez A, Morante JR, Berg DM, Dale PJ, Siebentritt S (2011) In-depth resolved Raman scattering analysis for the identification of secondary phases: Characterization of Cu\(_2\)ZnSnS\(_4\) layers for solar cell applications. Appl Phy Lett 98(18):181905CrossRefGoogle Scholar
  28. 28.
    Fernandes PA, Salomé PMP, da Cunha AF (2011) Study of polycrystalline Cu\(_2\)ZnSnS\(_4\) films by Raman scattering. J Alloys Compd 509(28):7600–7606CrossRefGoogle Scholar
  29. 29.
    Ganchev M, Iljina J, Kaupmees L, Raadik T, Volobujeva O, Mere A, Altosaar M, Raudoja J, Mellikov E (2011) Phase composition of selenized Cu\(_2\)ZnSnSe\(_4\) thin films determined by X-ray diffraction and raman spectroscopy. Thin Solid Films 519(21):7394–7398Google Scholar
  30. 30.
    Djemour R, Mousel M, Redinger A, Gtay L, Crossay A, Colombara D, Dale PJ, Susanne Siebentritt (2013) Detecting znse secondary phase in Cu\(_2\)ZnSnSe\(_4\) by room temperature photoluminescence. Appl Phy Lett 102(22):222108CrossRefGoogle Scholar
  31. 31.
    Colombara D, Robert EVC, Crossay A, Taylor A, Guennou M, Arasimowicz M, Malaquias JCB, Djemour R, Dale PJ (2014) Quantification of surface znse in Cu\(_2\)ZnSnSe\(_4\)-based solar cells by analysis of the spectral response. Solar Energy Mater Solar Cells 123:220–227CrossRefGoogle Scholar
  32. 32.
    Bouaziz M, Boubaker K, Amlouk M, Belgacem S (2010) Effect of cu/sn concentration ratio on the phase equilibrium-related properties of Cu–Sn–S sprayed materials. J Phase Equilib Diffus 31(6):498–503Google Scholar
  33. 33.
    Redinger A, Berg DM, Dale PJ, Siebentritt S (2011) The consequences of kesterite equilibria for efficient solar cells. J Am Chem Soc 133(10):3320–3323CrossRefGoogle Scholar
  34. 34.
    Tanaka T, Sueishi T, Saito K, Guo Q, Nishio M, Yu KM, Walukiewicz W (2012) Existence and removal of Cu2Se second phase in coevaporated Cu\(_2\)ZnSnSe\(_4\) thin films. J Appl Phys 111(5):053522Google Scholar
  35. 35.
    Fairbrother A, Garca-Hemme E, Izquierdo-Roca V, Fontan X, Pulgarn-Agudelo FA, Vigil-Galn O, Prez-Rodrguez A, Saucedo E (2012) Development of a selective chemical etch to improve the conversion efficiency of Zn-rich Cu\(_2\)ZnSnS\(_4\) solar cells. J Am Chem Soc 134(19):8018–8021CrossRefGoogle Scholar
  36. 36.
    Tsega M, Kuo D-H (2012) Defects and its effects on properties of Cu-deficient Cu2ZnSnSe4 bulks with different Zn/Sn ratios. Appl Phys Express 5(9):091201CrossRefGoogle Scholar
  37. 37.
    Kaune G, Hartnauer S, Syrowatka F, Scheer R (2014) Phase formation in Cu\(_2\)ZnSnSe\(_4\) thin films deposited with multi-stage co-evaporation processes. Solar Energy Mater Solar Cells, 120B:596–602Google Scholar
  38. 38.
    Kaune G, Hartnauer S, Scheer R (2014) In situ xrd investigation of Cu\(_2\)ZnSnSe\(_4\) thin film growth by thermal co-evaporation. Phys Status Solid A. doi: 10.1002/pssa.201330340
  39. 39.
    Tampo H, Makita K, Komaki H, Yamada A, Furue S, Ishizuka S, Shibata H, Matsubara K, Niki S (2014) Composition control of Cu\(_2\)ZnSnSe\(_4\)-based solar cells grown by coevaporation. Thin Solid Films 551:27–31CrossRefGoogle Scholar
  40. 40.
    Fairbrother A, Fontan X, Izquierdo-Roca V, Placidi M, Sylla D, Espindola-Rodriguez M, Lpez-Mario S, Pulgarn FA, Vigil-Galn O, Prez-Rodrguez A, Saucedo E (2014) Secondary phase formation in Zn-rich Cu\(_2\)ZnSnSe\(_4\)-based solar cells annealed in low pressure and temperature conditions. Prog Photovolt Res Appl 22(4):479–487CrossRefGoogle Scholar
  41. 41.
    Vora N, Blackburn J, Repins I, Beall C, To B, Pankow J, Teeter G, Young M, Noufi R (2012) Phase identification and control of thin films deposited by co-evaporation of elemental Cu, Zn, Sn, and Se. J Vac Sci Technol A 30(5):051201CrossRefGoogle Scholar
  42. 42.
    Septina W, Ikeda S, Kyoraiseki A, Harada T, Matsumura M (2013) Single-step electrodeposition of a microcrystalline Cu\(_2\)ZnSnSe\(_4\) thin film with a kesterite structure. Electrochim Acta 88:436–442CrossRefGoogle Scholar
  43. 43.
    Siebentritt S (2013) Why are kesterite solar cells not 20 % efficient? Thin Solid Films 535:1–4CrossRefGoogle Scholar
  44. 44.
    Larsen JK, Levent G, Siebentritt S (2011) Influence of secondary phase CuxSe on the optoelectronic quality of chalcopyrite thin films. Appl Phy Lett 98(20):201910CrossRefGoogle Scholar
  45. 45.
    Wätjen JT, Engman J, Edoff M, Platzer-Björkman C (2012) Direct evidence of current blocking by znse in Cu\(_2\)ZnSnSe\(_4\) solar cells. Appl Phy Lett 100(17):173510CrossRefGoogle Scholar
  46. 46.
    Redinger A, Mousel M, Wolter MH, Valle N, Siebentritt S (2013) Influence of S/Se ratio on series resistance and on dominant recombination pathway in Cu2ZnSn(SSe)4 thin film solar cells. Thin Solid Films 535:291–295CrossRefGoogle Scholar
  47. 47.
    Salomé PMP, Fernandes PA, da Cunha AF (2009) Morphological and structural characterization of Cu\(_2\)ZnSnSe\(_4\) thin films grown by selenization of elemental precursor layers. Thin Solid Films 517(7):2531–2534CrossRefGoogle Scholar
  48. 48.
    Hsu W-C, Repins I, Beall C, DeHart C, Teeter G, To B, Yang Y, Noufi R (2013) The effect of Zn excess on kesterite solar cells. Solar Energy Mater Solar Cells 113:160–164CrossRefGoogle Scholar
  49. 49.
    Volobujeva O, Raudoja J, Mellikov E, Grossberg M, Bereznev S, Traksmaa R (2009) Cu\(_2\)ZnSnSe\(_4\) films by selenization of SnZnCu sequential films. J Phys Chem Solids 70(3–4):567–570Google Scholar
  50. 50.
    Kim K-H, Amal I (2011) Growth of Cu\(_2\)ZnSnSe\(_4\) thin films by selenization of sputtered single-layered Cu–Zn–Sn metallic precursors from a Cu–Zn–Sn alloy target. Electron Mater Lett 7(3):225–230CrossRefGoogle Scholar
  51. 51.
    Repins I, Beall C, Vora N, DeHart C, Kuciauskas D, Dippo P, To B, Mann J, Hsu W-C, Goodrich A, Noufi R (2012) Co-evaporated Cu\(_2\)ZnSnSe\(_4\) films and devices. Solar Energy Mater Solar Cells 101:154–159CrossRefGoogle Scholar
  52. 52.
    Lund EA, Scarpulla MA (2013) Modeling Cu\(_2\)ZnSnS\(_4\) (CZTS) solar cells with kesterite and stannite phase variation. Proc SPIE 8620:862015–862015-8Google Scholar
  53. 53.
    International Centre of Diffraction Data (ICDD) Datasheets: CZTSe: 04-010-6295; ZnSe: 04-007-4741; Cu2SnSe3: 03-065-4145; Cu2Se: 01-071-4843; CuSe: 00-027-0185; SnSe: 04-004-4281; SnSe2: 01-089-3197; Mo: 04-001-2734 Google Scholar
  54. 54.
    Schorr S (2007) Structural aspects of adamantine like multinary chalcogenides. Thin Solid Films 515(15):5985–5991CrossRefGoogle Scholar
  55. 55.
    Ahmadi M, Pramana SS, Batabyal SK, Boothroyd C, Mhaisalkar SG, Lam YM (2013) Synthesis of Cu2SnSe3 nanocrystals for solution processable photovoltaic cells. Inorg Chem 52(4):1722–1728CrossRefGoogle Scholar
  56. 56.
    Postnikov AV, Mortazavi Amiri NB (2013) Calculated vibration spectrum of monoclinic Cu2SnSe3 in comparison with kesterite-type Cu\(_2\)ZnSnSe\(_4\). Phys Status Solid A 210(7):1332–1335.Google Scholar
  57. 57.
    Fan J, Carrillo-Cabrera W, Akselrud L, Antonyshyn I, Chen L, Grin Y (2013) New monoclinic phase at the composition Cu2SnSe3 and its thermoelectric properties. Inorg Chem 52(19):11067–11074CrossRefGoogle Scholar
  58. 58.
    Wibowo RA, Kim WS, Lee ES, Munir B, Kim KH (2007) Single step preparation of quaternary thin films by RF magnetron sputtering from binary chalcogenide targets. J Phys Chem Solids 68(10):1908–1913Google Scholar
  59. 59.
    Suresh Babu G, Kishore Kumar YB, Uday Bhaskar P, Sundara Raja V (2008) Growth and characterization of co-evaporated Cu2ZnSnSe4 thin films for photovoltaic applications. J Phys D 41(20):205305CrossRefGoogle Scholar
  60. 60.
    Zoppi G, Forbes I, Miles RW, Dale PJ, Scragg JJ, Peter LM (2009) Cu\(_2\)ZnSnSe\(_4\) thin film solar cells produced by selenisation of magnetron sputtered precursors. Prog Photovolt Res Appl 17(5):315–319CrossRefGoogle Scholar
  61. 61.
    Salomé PMP, Fernandes PA, da Cunha AF, Leitão JP, Malaquias J, Weber A, González JC, da Silva MIN (2010) Growth pressure dependence of Cu\(_2\)ZnSnSe\(_4\) properties. Solar Energy Mater Solar Cells 94(12):2176–2180CrossRefGoogle Scholar
  62. 62.
    Ahn SJ, Jung S, Gwak J, Cho A, Shin K, Yoon K, Park D, Cheong H, Jae HY (2010) Determination of band gap energy (E g) of Cu\(_2\)ZnSnSe\(_4\) thin films: on the discrepancies of reported band gap values. Appl Phy Lett 97(2):021905CrossRefGoogle Scholar
  63. 63.
    Salomé PMP (2011) Chalcogenide thin films for solar cells: growth and properties. PhD thesis, Universidade de Aveiro, 2011.Google Scholar
  64. 64.
    Gao F, Yamazoe S, Maeda T, Nakanishi K, Wada T (2012) Structural and optical properties of in-free Cu2ZnSn(S,Se)4 solar cell materials. Jpn J Appl Phys 51(10S):10NC29Google Scholar
  65. 65.
    Wibowo RA, Jung WH, Kim KH (2010) Synthesis of Cu\(_2\)ZnSnSe\(_4\) compound powders by solid state reaction using elemental powders. J Phys Chem Solids 71(12):1702–1706Google Scholar
  66. 66.
    Dong Y, Wang H, Nolas GS (2014) Synthesis and thermoelectric properties of cu excess Cu\(_2\)ZnSnSe\(_4\). Phys Status Solid (RRL) 8(1):61–64.Google Scholar
  67. 67.
    Larach S, Shrader RE, Stocker CF (1957) Anomalous variation of band gap with composition in zinc sulfo- and seleno-tellurides. Phys Rev 108:587–589CrossRefGoogle Scholar
  68. 68.
    Delgado GE, Mora AJ, Marcano G, Rincn C (2003) Crystal structure refinement of the semiconducting compound Cu2SnSe3 from X-ray powder diffraction data. Mater Res Bull 38(15):1949–1955CrossRefGoogle Scholar
  69. 69.
    Marcano G, Rincon C, de Chalbaud LM, Bracho DB, Sanchez Perez G (2001) Crystal growth and structure, electrical, and optical characterization of the semiconductor Cu2SnSe3. J Appl Phys 90(4):1847–1853CrossRefGoogle Scholar
  70. 70.
    Suresh Babu G, Kishore Kumar YB, Kumar Reddy Bharath Y, Sundara Raja V (2006) Growth and characterization of Cu2SnSe3 thin films. Mater Chem Phys 96(23):442–446Google Scholar
  71. 71.
    Haram Santosh K, Santhanam KSV (1995) Photoelectrochemical responses of orthorhombic and cubic copper selenides. J Electroanal Chem 396(12):63–68CrossRefGoogle Scholar
  72. 72.
    Pathan HM, Lokhande CD, Amalnerkar DP, Seth T (2003) Modified chemical deposition and physico-chemical properties of copper(i) selenide thin films. Appl Surf Sci 211(1–4):48–56Google Scholar
  73. 73.
    Pathinettam Padiyan D, Marikani A, Murali KR (2000) Electrical and photoelectrical properties of vacuum deposited snse thin films. Cryst Res Technol 35(8):949–957CrossRefGoogle Scholar
  74. 74.
    Fernandes PA, Sousa MG, Salomé PMP, Leitão JP, da Cunha AF (2013) Thermodynamic pathway for the formation of SnSe and SnSe2 polycrystalline thin films by selenization of metal precursors. CrystEngComm 15:10278–10286CrossRefGoogle Scholar
  75. 75.
    Bordas J, Robertson J, Jakobsson A (1978) Ultraviolet properties and band structure of SnS2, SnSe2, CdI2, PbI2, BiI3 and BiOI crystals. J Phys C 11(12):2607CrossRefGoogle Scholar
  76. 76.
    Salomé PMP, Fernandes PA, da Cunha AF (2010) Influence of selenization pressure on the growth of Cu\(_2\)ZnSnSe\(_4\) films from stacked metallic layers. Phys Status Solid C 7(3–4):913–916Google Scholar
  77. 77.
    Salomé PMP, Malaquias J, Fernandes PA, da Cunha AF (2010) Mo bilayer for thin film photovoltaics revisited. J Phys D 43(34):345501CrossRefGoogle Scholar
  78. 78.
    Kalugin VV, Minaev VS, Timoshenkov SP (2005) Structural and phase transformations in condensed selenium. J Optoelectron Adv Mater 7(4):1717–1741Google Scholar
  79. 79.
    Altosaar M, Raudoja J, Timmo K, Danilson M, Grossberg M, Krustok J, Mellikov E (2008) Cu\(_2\)Zn\(_{1-x}\)Cd\(_x\)Sn(Se\(_{1-y}\)S\(_y\))\(_4\) solid solutions as absorber materials for solar cells. Phys Status Solid A 205(1):167–170.Google Scholar
  80. 80.
    Grossberg M, Krustok J, Raudoja J, Timmo K, Altosaar M, Raadik T (2011) Photoluminescence and raman study of Cu2ZnSn(SexS1-x)4 monograins for photovoltaic applications. Thin Solid Films 519(21):7403–7406CrossRefGoogle Scholar
  81. 81.
    Sarswat PK, Free ML, Tiwari A (2011) Temperature-dependent study of the raman a mode of Cu\(_2\)ZnSnS\(_4\) thin films. Phys Status Solid A 248(9):2170–2174Google Scholar
  82. 82.
    Lermann G, Bischof T, Materny A, Kiefer W, Kummell T, Bacher G, Forchel A, Landwehr G (1997) Resonant micro-raman investigations of the ZnSe–LO splitting in ii–vi semiconductor quantum wires. J Appl Phys 81(3):1446–1450CrossRefGoogle Scholar
  83. 83.
    Chandrasekhar HR, Humphreys RG, Zwick U, Cardona M (1977) Infrared and raman spectra of the iv-vi compounds SnS and SnSe. Phys Rev B 15:2177–2183CrossRefGoogle Scholar
  84. 84.
    Boscher Nicolas D, Carmalt Claire J, Palgrave Robert G, Parkin Ivan P (2008) Atmospheric pressure chemical vapour deposition of SnSe and SnSe2 thin films on glass. Thin Solid Films 516(15):4750–4757CrossRefGoogle Scholar
  85. 85.
    Walsh D, Jandl S, Harbec JY (1980) Raman active modes of the layer crystal SnS2−xSex. J Phys C 13(7):L125CrossRefGoogle Scholar
  86. 86.
    Sugai S, Ueda T (Dec 1982) High-pressure raman spectroscopy in the layered materials \(2h\)-mos\(_{2}\), \(2h\)-mose\(_{2}\), and \(2h\)-mote\(_{2}\). Phys Rev B 26:6554–6558CrossRefGoogle Scholar
  87. 87.
    Xue C, Papadimitriou D, Raptis YS, Richter W, Esser N, Siebentritt S, Lux-Steiner MCh (2004) Micro-raman study of orientation effects of CuxSe-crystallites on Cu-rich CuGaSe2 thin films. J Appl Phys 96(4):1963–1966CrossRefGoogle Scholar
  88. 88.
    Khare A, Himmetoglu B, Johnson M, Norris DJ, Cococcioni M, Aydil ES (2012) Calculation of the lattice dynamics and raman spectra of copper zinc tin chalcogenides and comparison to experiments. J Appl Phys 111(8):083707CrossRefGoogle Scholar
  89. 89.
    Gürel T, Cem S, Çağın T (2011) Characterization of vibrational and mechanical properties of quaternary compounds Cu\(_2\)ZnSnS\(_4\) and Cu\(_2\)ZnSnSe\(_4\) in kesterite and stannite structures. Phys Rev B 84:205201CrossRefGoogle Scholar
  90. 90.
    Beigom N, Amiri M, Postnikov, A (2010) Electronic structure and lattice dynamics in kesterite-type Cu\(_2\)ZnSnSe\(_4\) from first-principles calculations. Phys Rev B 82:205204CrossRefGoogle Scholar
  91. 91.
    Fernandes PA, Salomé PMP, da Cunha AF (2009) Growth and Raman scattering characterization of Cu\(_2\)ZnSnS\(_4\) thin films. Thin Solid Films 517(7):2519–2523CrossRefGoogle Scholar
  92. 92.
    Fernandes PA, Salomé PMP, Sartori AF, Malaquias J, da Cunha AF, Schubert B-A, González JC, Ribeiro GM (2013) Effects of sulphurization time on Cu\(_2\)ZnSnS\(_4\) absorbers and thin films solar cells obtained from metallic precursors. Solar Energy Mater Solar Cells 115:157–165CrossRefGoogle Scholar
  93. 93.
    Dimitrievska M, Fairbrother A, Fontan X, Jawhari T, Izquierdo-Roca V, Saucedo E, Prez-Rodrguez A (2014) Multiwavelength excitation Raman scattering study of polycrystalline kesterite Cu\(_2\)ZnSnS\(_4\) thin films. Appl Phy Lett 104(2):021901CrossRefGoogle Scholar
  94. 94.
    Gouadec G, Colomban P (2007) Raman spectroscopy of nanomaterials: how spectra relate to disorder, particle size and mechanical properties. Prog Cryst Growth Charact Mater 53(1):1–56CrossRefGoogle Scholar
  95. 95.
    Lockwood DJ, Young JF (1991) Light scattering in semiconductor structures and superlattices, nato science series B, vol 273. Springer, BerlinGoogle Scholar
  96. 96.
    He J, Sun L, Zhang K, Wang W, Jiang J, Chen Y, Yang P, Chu J (2013) Effect of post-sulfurization on the composition, structure and optical properties of Cu\(_2\)ZnSnS\(_4\) thin films deposited by sputtering from a single quaternary target. Appl Surf Sci 264:133–138Google Scholar
  97. 97.
    Sarswat Prashant K, Free Michael L (2013) An investigation of rapidly synthesized Cu\(_2\)ZnSnS\(_4\) nanocrystals. J Cryst Growth 372:87–94CrossRefGoogle Scholar
  98. 98.
    Khare A, Wills AW, Ammerman LM, Norris DJ, Aydil ES (2011) Size control and quantum confinement in Cu\(_2\)ZnSnS\(_4\) nanocrystals. Chem Commun 47:11721–11723CrossRefGoogle Scholar
  99. 99.
    Valakh MY, Kolomys OF, Ponomaryov SS, Yukhymchuk VO, Babichuk IS, Izquierdo-Roca V, Saucedo E, Perez-Rodriguez A, Morante JR, Schorr S, Bodnar IV (2013) Raman scattering and disorder effect in Cu\(_2\)ZnSnS\(_4\). Phys Status Solid (RRL) 7(4):258–261Google Scholar
  100. 100.
    Li J, Ma T, Wei M, Liu W, Jiang G, Zhu C (2012) The Cu\(_2\)ZnSnSe\(_4\) thin films solar cells synthesized by electrodeposition route. Appl Surf Sci 258(17):6261–6265Google Scholar
  101. 101.
    Shin SW, Kim IY, Hwan Jeong Chae, Ho Yun Jae, Yong Lee Jeong, Hyeok Kim Jin (2013) Band gap tunable and improved microstructure characteristics of Cu2ZnSn(S(1−x)Se(x))4 thin films by annealing under atmosphere containing S and Se. Curr Appl Phys 13(8):1837–1843CrossRefGoogle Scholar
  102. 102.
    Caballero R, Guillén C (2003) Optical and electrical properties of CuIn1−xGaxSe2 thin films obtained by selenization of sequentially evaporated metallic layers. Thin Solid Films 431–432:200–204CrossRefGoogle Scholar
  103. 103.
    Tauc J, Grigorovici R, Vancu A (1966) Optical properties and electronic structure of amorphous germanium. Phys Status Solid B 15(2):627–637CrossRefGoogle Scholar
  104. 104.
    Fontane X, Izquierdo-Roca V, Calvo-Barrio L, Perez-Rodriguez A, Morante JR, Dominik Guettler, Eicke A, Tiwari AN (2009) Investigation of compositional inhomogeneities in complex polycrystalline Cu(In,Ga)Se2 layers for solar cells. Appl Phy Lett 95(26):261912CrossRefGoogle Scholar
  105. 105.
    Álvarez-García J, Pérez-Rodríguez A, Romano-Rodríguez A, Calvo-Barrio L, Barcones B, Morante JR, Siemer K, Luck I, Klenk R (2001) Microstructural characterisation of CuInS2 polycrystalline films sulfurised by rapid thermal processing. Thin Solid Films 387(1–2):219–221CrossRefGoogle Scholar
  106. 106.
    Calvo-Barrio L, Pérez-Rodríguez A, Álvarez-Garcia J, Romano-Rodríguez A, Barcones B, Morante JR, Siemer K, Luck I, Klenk R, Scheer R (2001) Combined in-depth scanning auger microscopy and Raman scattering characterisation of CuInS2 polycrystalline films. Vacuum 63(1–2):315–321CrossRefGoogle Scholar
  107. 107.
    Cheng A-J, Manno M, Khare A, Leighton C, Campbell SA, Aydil ES (2011) Imaging and phase identification of Cu\(_2\)ZnSnS\(_4\) thin films using confocal raman spectroscopy. J Vac Sci Technol A 29(5):051203CrossRefGoogle Scholar
  108. 108.
    Humlícek J (2000) Properties of silicon germanium and SiGe: carbon. INSPEC, The Institution of Electrical Engineers, LondonGoogle Scholar
  109. 109.
    Dirnstorfer I, Wagner MT, Hofmann DM, Lampert MD, Karg F, Meyer BK (1998) Characterization of CuIn(Ga)Se2 thin films. Phys Status Solid A 168(1):163–175CrossRefGoogle Scholar
  110. 110.
    Bauknecht A, Siebentritt S, Albert J, Lux-Steiner MCh (2001) Radiative recombination via intrinsic defects in CuxGaySe2. J Appl Phys 89(8):4391–4400CrossRefGoogle Scholar
  111. 111.
    Grossberg M, Krustok J, Timmo K, Altosaar M (2009) Radiative recombination in Cu\(_2\)ZnSnSe\(_4\) monograins studied by photoluminescence spectroscopy. Thin Solid Films 517(7):2489–2492CrossRefGoogle Scholar
  112. 112.
    Levanyuk AP, Osipov VV (1981) Edge luminescence of direct-gap semiconductors. Sov Phys Uspekhi 24(3):187CrossRefGoogle Scholar
  113. 113.
    Leitão JP, Santos NM, Fernandes PA, Salomé PMP, da Cunha AF, González JC, Ribeiro GM, Matinaga FM (2011) Photoluminescence and electrical study of fluctuating potentials in Cu\({}_{2}\)ZnSnS\({}_{4}\)-based thin films. Phys Rev B 84:024120CrossRefGoogle Scholar
  114. 114.
    Leitão JP, Carvalho A, Coutinho J, Pereira RN, Santos NM, Ankiewicz AO, Sobolev NA, Barroso M, Lundsgaard J (2011) Hansen, A. Nylandsted Larsen, and P. R. Briddon. Influence of ge content on the optical properties of X and W centers in dilute Si–Ge alloys. Phys Rev B 84(16):165211CrossRefGoogle Scholar
  115. 115.
    Gokmen T, Gunawan O, Todorov TK, Mitzi DB (2013) Band tailing and efficiency limitation in kesterite solar cells. Appl Phy Lett 103(10):103506CrossRefGoogle Scholar
  116. 116.
    Leitão JP, Santos NM, Fernandes PA, Salomé PMP, da Cunha AF, González JC, Matinaga FM (2011) Study of optical and structural properties of Cu\(_2\)ZnSnS\(_4\) thin films. Thin Solid Films 519(21):7390–7393CrossRefGoogle Scholar
  117. 117.
    Krustok J, Josepson R, Raadik T, Danilson M (2010) Potential fluctuations in Cu\(_2\)ZnSnSe\(_4\) solar cells studied by temperature dependence of quantum efficiency curves. Phys B 405(15):3186–3189CrossRefGoogle Scholar
  118. 118.
    Romero MJ, Du H, Teeter G, Yan Y, Al-Jassim MM (2011) Comparative study of the luminescence and intrinsic point defects in the kesterite Cu\(_2\)ZnSnS\(_4\) and chalcopyrite Cu(In,Ga)Se2 thin films used in photovoltaic applications. Phys Rev B 84:165324CrossRefGoogle Scholar
  119. 119.
    Redinger A, Hones K, Fontane X, Izquierdo-Roca V, Saucedo E, Valle N, Perez-Rodriguez A, Siebentritt S (2011) Detection of a ZnSe secondary phase in coevaporated Cu\(_2\)ZnSnSe\(_4\) thin films. Appl Phy Lett 98(10):101907CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Pedro M. P. Salomé
    • 1
    • 2
  • Paulo A. Fernandes
    • 3
  • Joaquim P. Leitão
    • 4
  • Marta G. Sousa
    • 4
  • Jennifer P. Teixeira
    • 4
  • António F. da Cunha
    • 4
  1. 1.Ångström Laboratory, Ångström Solar Center, Solid State ElectronicsUppsala UniversityUppsalaSweden
  2. 2.International Iberian Nanotechnology Laboratory (INL), Laboratory for Nanostructured Solar Cells (LaNaSC)BragaPortugal
  3. 3.Departamento de Física, Instituto Superior de Engenharia do PortoInstituto Politécnico do PortoPortoPortugal
  4. 4.I3N and Departamento de FísicaUniversidade de AveiroAveiroPortugal

Personalised recommendations