Skip to main content
Log in

Polypyrrole-wrapped halloysite nanocomposite and its rheological response under electric fields

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Conducting polypyrrole (PPy)-wrapped halloysite nanotube (HNT) nanocomposites (PPy/HNT) were prepared using an in situ polymerization process of pyrrole monomer in the presence of a HNT dispersion, and its electrorheological (ER) properties were investigated under applied electric fields. The morphology of both HNT and PPy/HNT nanocomposite was examined by scanning electron microscopy and transmission electron microscopy. The synthesized PPy/HNT nanocomposites were also analyzed using a physisorption analyzer, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The ER properties of the PPy/HNT nanocomposite dispersed in silicone oil measured using a rotational rheometer under different electric field strengths exhibited ER behaviors of shear stress, dynamic moduli, and relaxation modulus with a change in slope from 1.5 to 1.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wei C, Zhu Y, Yang X, Li C (2007) One-pot synthesis of polyaniline-doped in mesoporous TiO2 and its electrorheological behavior. Mater Sci Eng B 137:213–216

    Article  Google Scholar 

  2. Stěnička M, Pavlínek V, Sáha P, Blinova NV, Stejskal J, Quadrat O (2009) The electrorheological efficiency of polyaniline particles with various conductivities suspended in silicone oil. Colloid Polym Sci 287:403–412

    Article  Google Scholar 

  3. Liu F, Xu G, Wu J, Cheng Y, Guo J, Cui P (2010) Synthesis and electrorheological properties of oxalate group-modified amorphous titanium oxide nanoparticles. Colloid Polym Sci 288:1739–1744

    Article  Google Scholar 

  4. Zhang WL, Choi HJ (2011) Fast and facile fabrication of a graphene oxide/titania nanocomposite and its electro-responsive characteristics. Chem Commun 47:12286–12288

    Article  Google Scholar 

  5. Cheng Q, Pavlinek V, He Y, Yan Y, Li C, Saha P (2011) Synthesis and electrorheological characteristics of sea urchin-like TiO2 hollow spheres. Colloid Polym Sci 289:799–805

    Article  Google Scholar 

  6. Zhang WL, Choi HJ (2012) Fabrication of semiconducting polyaniline-wrapped halloysite nanotube composite and its electrorheology. Colloid Polym Sci 290:1743–1748

    Article  Google Scholar 

  7. Li L, Yan F, Xue G (2004) Preparation of a porous conducting polymer film by electrochemical synthesis–solvent extraction method. J Appl Polym Sci 91:303–307

    Article  Google Scholar 

  8. Yan F, Xue G, Wan F (2002) A flexible giant magnetoresistance sensor prepared completely by electrochemical synthesis. J Mater Chem 12:2606–2608

    Article  Google Scholar 

  9. Weng B, Shepherd R, Chen J, Wallace GG (2011) Gemini surfactant doped polypyrrole nanodispersions: an inkjet printable formulation. J Mater Chem 21:1918–1924

    Article  Google Scholar 

  10. Lee JY, Lee J-W, Schmidt CE (2009) Neuroactive conducting scaffolds: nerve growth factor conjugation on active ester-functionalized polypyrrole. J R Soc Interface 6:801–810

    Article  Google Scholar 

  11. Yoon DJ, Kim YD (2006) Synthesis and electrorheological behavior of sterically stabilized polypyrrole–silica–methylcellulose nanocomposite suspension. J Colloid Interf Sci 303:573–578

    Article  Google Scholar 

  12. Yang C, Liu P, Zhao Y (2010) Preparation and characterization of coaxial halloysite/polypyrrole tubular nanocomposites for electrochemical energy storage. Electrochim Acta 55:6857–6864

    Article  Google Scholar 

  13. Rao Y, Pochan JM (2007) Mechanics of polymer-clay nanocomposites. Macromolecules 40:290–296

    Article  Google Scholar 

  14. Carrión FJ, Arribas A, Bermúdez MD, Guillamon A (2008) Physical and tribological properties of a new polycarbonate-organoclay nanocomposite. Eur Polym J 44:968–977

    Article  Google Scholar 

  15. Singh B (1996) Why does halloysite roll? A new model. Clays Clay Miner 44:191–196

    Article  Google Scholar 

  16. Remškar M (2004) Inorganic nanotubes. Adv Mater 16:1497–1504

    Article  Google Scholar 

  17. Liu Y, Nan H, Cai Q, Li H (2012) Fabrication of halloysite@ polypyrrole composite particles and polypyrrole nanotubes on halloysite templates. J Appl Polym Sci 125:E638–E643

    Article  Google Scholar 

  18. Lvov YM, Shchukin DG, Mohwald H, Price RR (2008) Halloysite clay nanotubes for controlled release of protective agents. ACS Nano 2:814–820

    Article  Google Scholar 

  19. Chao C, Liu J, Wang J, Zhang Y, Zhang B, Zhang Y, Xiang X, Chen R (2013) Surface modification of halloysite nanotubes with dopamine for enzyme immobilization. ACS Appl Mater Interf 5:10559–10564

    Article  Google Scholar 

  20. Tierrablanca E, Romero-García J, Roman P, Cruz-Silva R (2010) Biomimetic polymerization of aniline using hematin supported on halloysite nanotubes. Appl Catal A 381:267–273

    Article  Google Scholar 

  21. Abdullayev E, Abbasov V, Tursunbayeva A, Portnov V, Ibrahimov H, Mukhtarova G, Lvov Y (2013) Self-healing coatings based on halloysite clay polymer composites for protection of copper alloys. ACS Appl Mater Interf 5:4464–4471

    Google Scholar 

  22. Dong Y, Chaudhary D, Haroosh H, Bickford T (2011) Development and characterisation of novel electrospun polylactic acid/tubular clay nanocomposites. J Mater Sci 46:6148–6153. doi:10.1007/s10853-011-5605-6

    Article  Google Scholar 

  23. Zhang L, Wang T, Liu P (2008) Polyaniline-coated halloysite nanotubes via in situ chemical polymerization. Appl Surf Sci 255:2091–2097

    Article  Google Scholar 

  24. Shchukin DG, Sukhorukov GB, Price RR, Lvov YM (2005) Halloysite nanotubes as biomimetic nanoreactors. Small 1:510–513

    Article  Google Scholar 

  25. Antill SJ (2003) Halloysite: a low-cost alternative. Aust J Chem 56:723

    Article  Google Scholar 

  26. Liu Y, Cai Q, Li H, Zhang J (2013) Fabrication and characterization of mesoporous carbon nanosheets using halloysite nanotubes and polypyrrole via a template-like method. J Appl Polym Sci 128:517–522

    Article  Google Scholar 

  27. Patzke GR, Krumeich F, Nesper R (2002) Oxidic nanotubes and nanorods—anisotropic modules for a future nanotechnology. Angew Chem Int Ed Engl 41:2446–2461

    Article  Google Scholar 

  28. Sun T, Liu H, Song W, Wang X, Jiang L, Li L, Zhu D (2004) Responsive aligned carbon nanotubes. Angew Chem Int Ed Engl 43:4663–4666

    Article  Google Scholar 

  29. Rozynek Z, Knudsen KD, Fossum JO, Meheust Y, Wang B, Zhou M (2010) J Phys 22:324104

    Google Scholar 

  30. Cheah K, Forsyth M, Truong VT (1998) Ordering and stability in conducting polypyrrole. Synth Met 94:215–219

    Article  Google Scholar 

  31. Jang JS, Yoon HS (2004) Novel fabrication of size-tunable silica nanotubes using a reverse-microemulsion-mediated sol–gel method. Adv Mater 16:799–802

    Article  Google Scholar 

  32. Nicolini KP, Fukamachi CRB, Wypych F, Mangrich AS (2009) Dehydrated halloysite intercalated mechanochemically with urea: thermal behavior and structural aspects. J Colloid Interface Sci 338:474–479

    Article  Google Scholar 

  33. Park DP, Lim ST, Lim JY, Choi HJ, Choi SB (2009) Electrorheological characteristics of solvent-cast polypyrrole/clay nanocomposite. J Appl Polym Sci 112:1365–1371

    Article  Google Scholar 

  34. Jun S, Joo SH, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O (2000) Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J Am Chem Soc 122:10712–10713

    Article  Google Scholar 

  35. Kaushal M, Joshi YM (2011) Self-similarity in electrorhological behavior. Soft Matter 7:9051–9060

    Article  Google Scholar 

  36. Jiang J, Tian Y, Meng Y (2011) Structure parameter of electrotheological fluid in shear flow. Langmuir 27:5814–5823

    Article  Google Scholar 

  37. Cho MS, Choi HJ, Jhon MS (2005) Shear stress analysis of a semiconducting polymer based electrorheological fluid system. Polymer 46:11484–11488

    Article  Google Scholar 

  38. Wang B, Zhou M, Rozynek Z, Fossum JO (2009) Electrorheological properties of organically modified nanolayered laponite: influence of intercalation, adsorption and wettability. J Mater Chem 19:1816–1828

    Article  Google Scholar 

  39. Klingenberg DJ, Van Swol F, Zukoski CF (1991) The small shear rate response of electrorheological suspensions. II. Extension beyond the point–dipole limit. J Chem Phys 94:6170–6178

    Article  Google Scholar 

  40. Parmar KPS, Méheust Y, Schjelderupsen B, Fossum JO (2008) Electrorheological suspensions of laponite in oil: rheometry studies. Langmuir 24:1814–1822

    Article  Google Scholar 

  41. Prasad R, Pasanovic-Zujo V, Gupta RK, Cser F, Bhattacharya SN (2004) Morphology of EVA based nanocomposites under shear and extensional flow. Polym Eng Sci 44:1220–1230

    Article  Google Scholar 

  42. Schwarzl FL (1975) Numerical calculation of stress relaxation modulus from dynamic data for linear viscoelastic materials. Rheol Acta 14:581–590

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the Fundamental R&D Program for Core Technology of Materials funded by the Ministry of Knowledge Economy, Korea (2013) through Dongbu C&I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyoung Jin Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, D.S., Zhang, W.L. & Choi, H.J. Polypyrrole-wrapped halloysite nanocomposite and its rheological response under electric fields. J Mater Sci 49, 7309–7316 (2014). https://doi.org/10.1007/s10853-014-8443-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8443-5

Keywords

Navigation