Skip to main content
Log in

Hardness and flexural strength of single-walled carbon nanotube/alumina composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This work adds new experimental facts on room temperature hardness and flexural strength of alumina and composites with 1, 2, 5 and 10 vol% single-walled carbon nanotubes (SWNT) with similar grain size. Monolithic Al2O3 and composites were spark plasma sintered (SPS) in identical conditions at 1300 °C, achieving high density, submicrometric grain size and a reasonably homogeneous distribution of SWNT along grain boundaries for all compositions with residual agglomerates. Vickers hardness values comparable to monolithic alumina were obtained for composites with low (1 vol%) SWNT content, though they decreased for higher concentrations, attributed to the fact that SWNT constitute a softer phase. Three-point bending flexural strength also decreased with increasing SWNT content. Correlation between experimental results and microstructural analysis by electron microscopy indicates that although SWNT agglomerates have often been blamed for detrimental effects on the mechanical properties of these composites, they are not the main cause for the reported decay in flexural strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li F, Cheng H, Bai S, Su G, Dresselhaus M (2000) Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes. Appl Phys Lett 77(20):3161–3163

    Article  Google Scholar 

  2. Inam F, Yan H, Jayaseelan DD, Peijs T, Reece MJ (2010) Electrically conductive alumina-carbon nanocomposites prepared by spark plasma sintering. J Eur Ceram Soc 30(2):153–157

    Article  Google Scholar 

  3. Sivakumar R, Guo S, Nishimura T, Kagawa Y (2007) Thermal conductivity in multi-wall carbon nanotube/silica-based nanocomposites. Scr Mater 56(4):265–268

    Article  Google Scholar 

  4. Zhan GD, Kuntz JD, Wan JL, Mukherjee AK (2003) Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites. Nat Mater 2(1):38–42

    Article  Google Scholar 

  5. Okada A (2008) Automotive and industrial applications of structural ceramics in Japan. J Eur Ceram Soc 28(5):1097–1104

    Article  Google Scholar 

  6. Inam F, Yan H, Peijs T, Reece MJ (2010) The sintering and grain growth behaviour of ceramic-carbon nanotube nanocomposites. Compos Sci Technol 70(6):947–952

    Article  Google Scholar 

  7. Xu H, Jahanmir S (1995) Effect of grain-size on scratch damage and hardness of alumina. J Mater Sci Lett 14(10):736–739

    Article  Google Scholar 

  8. Miyahara N, Yamaishi K, Mutoh Y, Uematsu K, Inoue M (1994) Effect of grain-size on strength and fracture-toughness in alumina. Int J Ser A-Mech Mater Eng 37(3):231–237

    Google Scholar 

  9. You X, Si T, Liu N, Ren P, Xu Y, Feng J (2005) Effect of grain size on thermal shock resistance of Al2O3–TiC ceramics. Ceram Int 31(1):33–38

    Article  Google Scholar 

  10. Hiraga K, Kim B, Morita K, Yoshida H, Suzuki TS, Sakka Y (2007) High-strain-rate superplasticity in oxide ceramics. Sci Technol Adv Mater 8(7–8):578–587

    Article  Google Scholar 

  11. Xia Z, Riester L, Curtin WA, Li H, Sheldon BW, Liang J, Chang B, Xu JM (2004) Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites. Acta Mater 52(4):931–944

    Article  Google Scholar 

  12. Mukhopadhyay A, Chu BTT, Green MLH, Todd RI (2010) Understanding the mechanical reinforcement of uniformly dispersed multiwalled carbon nanotubes in alumino-borosilicate glass ceramic. Acta Mater 58(7):2685–2697

    Article  Google Scholar 

  13. Padture NP (2009) Multifunctional composites of ceramics and single-walled carbon nanotubes. Adv Mater 21(17):1767–1770

    Article  Google Scholar 

  14. Sun J, Gao L, Iwasa M, Nakayama T, Niihara K (2005) Failure investigation of carbon nanotube/3Y-TZP nanocomposites. Ceram Int 31(8):1131–1134

    Article  Google Scholar 

  15. Laurent C, Peigney A, Dumortier O, Rousset A (1998) Carbon nanotubes Fe alumina nanocomposites. Part II: microstructure and mechanical properties of the hot-pressed composites. J Eur Ceram Soc 18(14):2005–2013

    Article  Google Scholar 

  16. Thomson KE, Jiang D, Ritchie RO, Mukherjee AK (2007) A preservation study of carbon nanotubes in alumina-based nanocomposites via Raman spectroscopy and nuclear magnetic resonance. Appl Phys A-Mat Sci Proc 89(3):651–654

    Article  Google Scholar 

  17. Jiang D, Thomson K, Kuntz JD, Ager JW, Mukherjee AK (2007) Effect of sintering temperature on a single-wall carbon nanotube-toughened alumina-based nanocomposite. Scr Mater 56(11):959–962

    Article  Google Scholar 

  18. Ahmad K, Pan W (2008) Hybrid nanocomposites: a new route towards tougher alumina ceramics. Compos Sci Technol 68(6):1321–1327

    Article  Google Scholar 

  19. Mo C, Cha S, Kim K, Lee K, Hong S (2005) Fabrication of carbon nanotube reinforced alumina matrix nanocomposite by sol–gel process. Mat Sci Eng A-Struct 395(1–2):124–128

    Article  Google Scholar 

  20. Cha S, Kim K, Lee K, Mo C, Hong S (2005) Strengthening and toughening of carbon nanotube reinforced alumina nanocomposite fabricated by molecular level mixing process. Scr Mater 53(7):793–797

    Article  Google Scholar 

  21. Fan JP, Zhao DQ, Wu MS, Xu ZN, Song J (2006) Preparation and microstructure of multi-wall carbon nanotubes-toughened Al2O3 composite. J Am Ceram Soc 89(2):750–753

    Article  Google Scholar 

  22. Kim SW, Chung WS, Sohn K, Son C, Lee S (2009) Improvement of flexure strength and fracture toughness in alumina matrix composites reinforced with carbon nanotubes. Mat Sci Eng A-Struct 517(1–2):293–299

    Article  Google Scholar 

  23. Yamamoto G, Hashida T (2012) Carbon nanotube reinforced alumina composite materials. In: Hu N (ed) Composites and their properties: InTech

  24. Ahmad I, Unwin M, Cao H, Chen H, Zhao H, Kennedy A, Zhu YQ (2010) Multi-walled carbon nanotubes reinforced Al2O3 nanocomposites: mechanical properties and interfacial investigations. Compos Sci Technol 70(8):1199–1206

    Article  Google Scholar 

  25. Bakhsh N, Khalid FA, Hakeem AS (2013) Synthesis and characterization of pressureless sintered carbon nanotube reinforced alumina nanocomposites. Mat Sci Eng A-Struct 578:422–429

    Article  Google Scholar 

  26. Ahmad I, Cao H, Chen H, Zhao H, Kennedy A, Zhu YQ (2010) Carbon nanotube toughened aluminium oxide nanocomposite. J Eur Ceram Soc 30(4):865–873

    Article  Google Scholar 

  27. Liu J, Rinzler A, Dai H, Hafner J, Bradley R, Boul P, Lu A, Iverson T, Shelimov K, Huffman C, Rodriguez-Macias F, Shon Y, Lee T, Colbert D, Smalley R (1998) Fullerene pipes. Science 280(5367):1253–1256

    Article  Google Scholar 

  28. Poyato R, Vasiliev AL, Padture NP, Tanaka H, Nishimura T (2006) Aqueous colloidal processing of single-wall carbon nanotubes and their composites with ceramics. Nanotechnology 17(6):1770–1777

    Article  Google Scholar 

  29. Omori M (2000) Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Mat Sci Eng A-Struct 287(2):183–188

    Article  Google Scholar 

  30. Munir ZA, Anselmi-Tamburini U, Ohyanagi M (2006) The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J Mater Sci 41(3):763–777

    Article  Google Scholar 

  31. Thomson KE, Jiang D, Yao W, Ritchie RO, Mukherjee AK (2012) Characterization and mechanical testing of alumina-based nanocomposites reinforced with niobium and/or carbon nanotubes fabricated by spark plasma sintering. Acta Mater 60(2):622–632

    Article  Google Scholar 

  32. Wang XT, Padture NP, Tanaka H (2004) Contact-damage-resistant ceramic/single-wall carbon nanotubes and ceramic/graphite composites. Nat Mater 3(8):539–544

    Article  Google Scholar 

  33. Poyato R, Gallardo-López A, Gutiérrez-Mora F, Morales-Rodríguez A, Muñoz A, Domínguez-Rodríguez A (2014) Effect of high SWNT content on the room temperature mechanical properties of fully dense 3YTZP/SWNT composites. J Eur Ceram Soc 34(6):1571–1579

    Article  Google Scholar 

  34. Morales-Rodriguez A, Poyato R, Gallardo-Lopez A, Muñoz A, Dominguez-Rodriguez A (2013) Evidence of nanograin cluster coalescence in spark plasma sintered alpha-Al2O3. Scr Mater 69(7):529–532

    Article  Google Scholar 

  35. González L, Cumbrera F, Sánchez-Bajo F, Pajares A (1994) Measurement of fiber orientation in short-fiber composites. Acta Metall Mater 42(3):689–694

    Article  Google Scholar 

  36. Vasiliev AL, Poyato R, Padture NP (2007) Single-wall carbon nanotubes at ceramic grain boundaries. Scr Mater 56(6):461–463

    Article  Google Scholar 

  37. Poorteman M, Traianidis M, Bister G, Cambier F (2009) Colloidal processing, hot pressing and characterisation of electroconductive MWCNT-alumina composites with compositions near the percolation threshold. J Eur Ceram Soc 29(4):669–675

    Article  Google Scholar 

  38. Huang Q, Jiang D, Ovid’ko IA, Mukherjee A (2010) High-current-induced damage on carbon nanotubes: the case during spark plasma sintering. Scr Mater 63(12):1181–1184

    Article  Google Scholar 

  39. Morales-Rodríguez A, Gallardo-López A, Fernández-Serrano A, Poyato R, Muñoz A, Domínguez-Rodríguez A (2014) Improvement of Vickers hardness measurement on SWNT/Al2O3 composites consolidated by spark plasma sintering. J Eur Ceram Soc. doi:10.1016/j.jeurceramsoc.2014.05.048

  40. Peigney A, Flahaut E, Laurent C, Chastel F, Rousset A (2002) Aligned carbon nanotubes in ceramic-matrix nanocomposites prepared by high-temperature extrusion. Chem Phys Lett 352(1–2):20–25

    Article  Google Scholar 

  41. Zapata-Solvas E, Gomez-Garcia D, Dominguez-Rodriguez A (2012) Towards physical properties tailoring of carbon nanotubes-reinforced ceramic matrix composites. J Eur Ceram Soc 32(12):3001–3020

    Article  Google Scholar 

  42. Zapata-Solvas E, Gómez-García D, Domínguez-Rodríguez A (2010) On the microstructure of single wall carbon nanotubes reinforced ceramic matrix composites. J Mater Sci 45(9):2258–2263

    Article  Google Scholar 

  43. Liu L, Hou Z, Zhang B, Ye F, Zhang Z, Zhou Y (2013) A new heating route of spark plasma sintering and its effect on alumina ceramic densification. Mat Sci Eng A-Struct 559:462–466

    Article  Google Scholar 

  44. Inam F, Peijs T, Reece MJ (2011) The production of advanced fine-grained alumina by carbon nanotube addition. J Eur Ceram Soc 31(15):2853–2859

    Article  Google Scholar 

  45. ASTM C116113 (1996) standard test method for flexural strength of advanced ceramics at ambient temperature. In: Anonymous book of standards, vol 15.01

  46. Kasperski A, Wibel A, Estournès C, Laurent Ch, Peigney A (2013) Preparation-microstructure-property relationships in double-walled carbon nanotubes/alumina composites. Carbon 53:62–72

    Article  Google Scholar 

  47. Flahaut E, Peigney A, Laurent C, Marliere C, Chastel F, Rousset A (2000) Carbon nanotube-metal-oxide nanocomposites: microstructure, electrical conductivity and mechanical properties. Acta Mater 48(14):3803–3812

    Article  Google Scholar 

  48. Poorteman M, Descamps P, Cambier F, Leriche A, Thierry B (1993) Hot isostatic pressing of SiC-platelets Y-Tzp composites. J Eur Ceram Soc 12(2):103–109

    Article  Google Scholar 

Download references

Acknowledgements

This work was financed by Spanish Ministry of Science and Innovation (MAT2009-11078 and MAT2012-34217) and by Junta de Andalucía (P12-FQM-1079). Microscopy studies were performed at CITIUS facilities (Universidad de Sevilla).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gallardo-López.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallardo-López, A., Poyato, R., Morales-Rodríguez, A. et al. Hardness and flexural strength of single-walled carbon nanotube/alumina composites. J Mater Sci 49, 7116–7123 (2014). https://doi.org/10.1007/s10853-014-8419-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8419-5

Keywords

Navigation