Advertisement

Journal of Materials Science

, Volume 49, Issue 20, pp 7049–7065 | Cite as

Influence of morphologic texture on stress analysis by X-ray and neutron diffraction in single-phase metallic materials

  • Viwanou HounkpatiEmail author
  • Sylvain Fréour
  • David Gloaguen
  • Vincent Legrand
Article

Abstract

In this work, a study on the influence of morphologic texture on the residual stress determination by diffraction in metallic materials with cubic and hexagonal symmetry is proposed. To this end, elastic self-consistent model has been developed to properly take into account the morphologic texture. Extreme crystallites morphologies (sphere, disc and fibre) were studied, and coupled with the crystallographic texture to reflect the combined effect of morphologic and crystallographic texture in elasticity. In the case of morphologic texture, a stronger influence than the crystallographic texture on the estimated residual stresses (several tens of MPa difference) was observed. We propose a methodology through a scale transition model to take into account the influence of these different morphologies in the stress analysis by diffraction methods. The main purpose of this work was to make the best choice for lattice planes (hkl) used for residual or internal stress analysis, in elasticity, depending on the morphologic (and crystallographic) texture of the polycrystal, especially when the usual X-ray Elasticity Constants (XECs) are used instead of the stress factors.

Keywords

Neutron Diffraction Stress Analysis Lattice Plane Crystallographic Texture Orientation Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Reuss A (1929) Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. ZAMM J Appl Math Mech/Zeitschrift für Angew Math und Mech 9:49–58CrossRefGoogle Scholar
  2. 2.
    Hill R (1952) The elastic behaviour of a crystalline aggregate. Proc Phys Soc Sect A 65:349–353. doi: 10.1088/0370-1298/65/5/307 CrossRefGoogle Scholar
  3. 3.
    Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond Ser A Math Phys Sci 241:376–396CrossRefGoogle Scholar
  4. 4.
    Kröner E (1958) Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls. Z für Phys 151:504–518CrossRefGoogle Scholar
  5. 5.
    Hill R (1963) Elastic Properties of Reinforced Solids: Some Theoretical Principles. J Mech Phys Solids 11:357–372CrossRefGoogle Scholar
  6. 6.
    Hill R (1964) Theory of mechanical properties of fibre-strengthened materials: i. elastic behaviour. J Mech Phys Solids 12:199–212CrossRefGoogle Scholar
  7. 7.
    Hill R (1965) A self-consistent mechanics of composite materials. J Mech Phys Solids 13:213–222CrossRefGoogle Scholar
  8. 8.
    Hauk V (1997) Structural and residual stress analysis by nondestructive methods. Elsevier, AmsterdamGoogle Scholar
  9. 9.
    Welzel U, Fréour S, Mittemeijer EJ (2005) Direction-dependent elastic grain-interaction models—a comparative study. Philos Mag 85:2391–2414. doi: 10.1080/14786430500070685 CrossRefGoogle Scholar
  10. 10.
    Welzel U, Fréour S, Kumar A, Mittemeijer EJ (2006) Diffraction stress analysis of grain interaction in polycrystalline materials. Z für Krist S23:43–49CrossRefGoogle Scholar
  11. 11.
    Welzel U, Kumar A, Mittemeijer EJ (2009) Extremely anisotropic, direction-dependent elastic grain interaction: The case of ultrathin films. Appl Phys Lett 95:111907. doi: 10.1063/1.3224904 CrossRefGoogle Scholar
  12. 12.
    Fréour S, Lacoste E, François M, Guillén R (2011) Determining Ti-17 β-Phase single-crystal elasticity constants through X-ray diffraction and inverse scale transition model. Mater Sci Forum 681:97–102. doi: 10.4028/www.scientific.net/MSF.681.97 CrossRefGoogle Scholar
  13. 13.
    Patoor E, Lagoudas DC, Entchev PB et al (2006) Shape memory alloys, Part I: general properties and modeling of single crystals. Mech Mater 38:391–429. doi: 10.1016/j.mechmat.2005.05.027 CrossRefGoogle Scholar
  14. 14.
    Lacoste E, Fréour S, Jacquemin F (2010) On the validity of the self-consistent scale transition model for inclusions with varying morphologies. Mech Mater 42:218–226. doi: 10.1016/j.mechmat.2009.10.002 CrossRefGoogle Scholar
  15. 15.
    Krier J, Ruppersberg H, Berveiller M, Lipinski P (1991) Elastic and plastic anisotropy effects on second order internal stresses in textured polycrystalline materials. Textures Microstruct 14–18:1147–1152CrossRefGoogle Scholar
  16. 16.
    Hendrix BC, Yu LG (1998) Self-consistent elastic properties for transversely isotropic polycrystals. Acta Mater 46:127–135. doi: 10.1016/S1359-6454(97)00261-9 CrossRefGoogle Scholar
  17. 17.
    Koch N, Welzel U, Wern H, Mittemeijer EJ (2004) Mechanical elastic constants and diffraction stress factors of macroscopically elastically anisotropic polycrystals: the effect of grain-shape (morphological) texture. Philos Mag 84:3547–3570CrossRefGoogle Scholar
  18. 18.
    Fréour S, Gloaguen D, François M et al (2005) Determination of single-crystal elasticity constants in a cubic phase within a multiphase alloy: X-ray diffraction measurements and inverse-scale transition modelling. J Appl Crystallogr 38:30–37. doi: 10.1107/S0021889804023441 CrossRefGoogle Scholar
  19. 19.
    Hofmann M, Wimpory RC (2009) NET TG1: residual stress analysis on a single bead weld on a steel plate using neutron diffraction at the new engineering instrument “STRESS-SPEC.”. Int J Press Vessel Pip 86:122–125. doi: 10.1016/j.ijpvp.2008.11.007 CrossRefGoogle Scholar
  20. 20.
    Manns T, Scholtes B (2013) Diffraction residual stress analysis in technical components—status and prospects. Thin Solid Films 530:53–61. doi: 10.1016/j.tsf.2012.03.064 CrossRefGoogle Scholar
  21. 21.
    Foss BJ, Gray S, Hardy MC et al (2013) Analysis of shot-peening and residual stress relaxation in the nickel-based superalloy RR1000. Acta Mater 61:2548–2559. doi: 10.1016/j.actamat.2013.01.031 CrossRefGoogle Scholar
  22. 22.
    Barile C, Casavola C, Pappalettera G, Pappalettere C (2014) Analysis of the effects of process parameters in residual stress measurements on Titanium plates by HDM/ESPI. Measurement 48:220–227. doi: 10.1016/j.measurement.2013.11.014 CrossRefGoogle Scholar
  23. 23.
    Baczmański A, Tidu A, Lipinski P et al (2006) New type of diffraction elastic constants for stress determination. Mater Sci Forum 524–525:235–240CrossRefGoogle Scholar
  24. 24.
    Baczmański A, Lipinski P, Tidu A et al (2008) Quantitative estimation of incompatibility stresses and elastic energy stored in ferritic steel. J Appl Crystallogr 41:854–867. doi: 10.1107/S0021889808023911 CrossRefGoogle Scholar
  25. 25.
    Kocks UF, Tomé CN, Wenk HR (1998) Texture and anisotropy: preferred orientations in polycrystals and their effect on materials properties. Cambridge University Press, CambridgeGoogle Scholar
  26. 26.
    Bunge H-J (1982) Texture analysis in materials science. Butterwort, LondonGoogle Scholar
  27. 27.
    Morris PR (1970) Elastic constants of polycrystals. Int J Eng Sci 8:49–61CrossRefGoogle Scholar
  28. 28.
    Dölle H (1979) The influence of multiaxial stress states gradients and elastic anisotropy on the evaluation of residual stresses by X-rays. J Appl Crystallogr 12:489–501CrossRefGoogle Scholar
  29. 29.
    Brakman CM (1983) Residual stresses in cubic materials with orthorhombic or monoclinic specimen symmetry: influence of texture on ψ splitting and non-linear behaviour. J Appl Crystallogr 16:325–340. doi: 10.1107/S0021889883010511 CrossRefGoogle Scholar
  30. 30.
    Sprauel JM, Francois M, Barral M (1989) Calculation of X-ray Elastic Constants of Textured Materials Using Kroner Model. In: Beck G, Denis S, Simon A (eds) International Conference on Residual Stress. 2. Springer Netherlands, pp 172–177Google Scholar
  31. 31.
    Ortiz M, Pochettino AA, Lebrun JL, Maeder G (1991) X-ray elastic constants in textured titanium sheets and bars. Textures Microstruct 14–18:219–224CrossRefGoogle Scholar
  32. 32.
    Ortiz M, Pochettino AA, Lebrun JL, Maeder G (1993) X-ray elastic constants in textured Zr-base materials. Metall Trans A 24:389–396CrossRefGoogle Scholar
  33. 33.
    Gnäupel-Herold T, Brand PC, Prask HJ (1998) Calculation of single-crystal elastic constants for cubic crystal symmetry from powder diffraction data. J Appl Crystallogr 31:929–935. doi: 10.1107/S002188989800898X CrossRefGoogle Scholar
  34. 34.
    Nagashima S, Shiratori M, Fujiu T (1981) The estimation of elastic constans for the X-ray stress analysis of textured metallic materials. Proceedings of the 6th International Conference on Textures of Materials 2:1148–1156Google Scholar
  35. 35.
    Chung DH, Buessem WR (1967) The elastic anisotropy of crystals. J Appl Phys 38:2010–2012CrossRefGoogle Scholar
  36. 36.
    Alers GA, Neighbours JR (1958) The elastic constants of the zinc between 4.2° and 670 °K. J Phys Chem Solids 7:58–64CrossRefGoogle Scholar
  37. 37.
    Ledbetter HM (1977) Elastic properties of zinc: a compilation and a review. J Phys Chem Ref Data 6:1181–1203CrossRefGoogle Scholar
  38. 38.
    Noyan IC, Cohen JB (1987) Residual stress—measurement by diffraction and interpretation. Springer-V, New YorkGoogle Scholar
  39. 39.
    Gloaguen D, Fajoui J, Girard E, Guillén R (2010) X-ray measurement of residual stresses and texture development during a rolling sequence of zirconium alloy cladding tubes—influence of plastic anisotropy on mechanical behaviour. J Appl Crystallogr 43:890–899CrossRefGoogle Scholar
  40. 40.
    Zhang F, Vincent G, Sha YH et al (2004) Experimental and simulation textures in an asymmetrically rolled zinc alloy sheet. Scr Mater 50:1011–1015. doi: 10.1016/j.scriptamat.2003.12.031 CrossRefGoogle Scholar
  41. 41.
    Van Swygenhoven H, Van Petegem S (2013) In-situ mechanical testing during X-ray diffraction. Mater Charact 78:47–59. doi: 10.1016/j.matchar.2012.12.010 CrossRefGoogle Scholar
  42. 42.
    Cullity BD (1956) Elements of X-ray diffraction, Addison-WesleyGoogle Scholar
  43. 43.
    Dakhlaoui R, Braham C, Baczmański A (2007) Mechanical properties of phases in austeno-ferritic duplex stainless steel—surface stresses studied by X-ray diffraction. Mater Sci Eng A 444:6–17CrossRefGoogle Scholar
  44. 44.
    Reimers W, Pyzalla AR, Schreyer A, Clemens H (2008) Neutrons and synchrotons radiation in engineering materials science. wiley-VCH, WeinheimGoogle Scholar
  45. 45.
    Clausen B, Lorentzen T, Leffers T (1998) Self-consistent modelling of the plastic deformation of f.c.c. polycrystals and its implications for diffraction measurements of internal stresses. Acta Mater 46:3087–3098. doi: 10.1016/S1359-6454(98)00014-7 CrossRefGoogle Scholar
  46. 46.
    Gloaguen D, Oum G, Legrand V et al (2013) Experimental and theoretical studies of intergranular strain in an alpha titanium alloy during plastic deformation. Acta Mater 61:5779–5790CrossRefGoogle Scholar
  47. 47.
    Muránsky O, Carr DG, Barnett MR et al (2008) Investigation of deformation mechanisms involved in the plasticity of AZ31 Mg alloy: in situ neutron diffraction and EPSC modelling. Mater Sci Eng A 496:14–24CrossRefGoogle Scholar
  48. 48.
    Muránsky O, Barnett MR, Carr DG et al (2010) Investigation of deformation twinning in a fine-grained and coarse-grained ZM20 Mg alloy: combined in situ neutron diffraction and acoustic emission. Acta Mater 58:1503–1517CrossRefGoogle Scholar
  49. 49.
    Faurie D, Renault P-O, Le Bourhis E, Goudeau P (2006) Study of texture effect on elastic properties of Au thin films by X-ray diffraction and in situ tensile testing. Acta Mater 54:4503–4513. doi: 10.1016/j.actamat.2006.05.036 CrossRefGoogle Scholar
  50. 50.
    Brandes EA, Brook GB (1992) Smithells metals reference book, 7th edn. Butterworth-Heinemann, BodminGoogle Scholar
  51. 51.
    Dölle H, Cohen JB (1980) Evaluation of (residual) stresses in textured cubic metals. Metall Trans A 11:831–836CrossRefGoogle Scholar
  52. 52.
    Taylor GI (1938) Plastic strain in metals. Twenty-eighth May Lect to Inst Met 307–325Google Scholar
  53. 53.
    Gloaguen D, Berchi T, Girard E, Guillén R (2007) Measurement and prediction of residual stresses and crystallographic texture development in rolled Zircaloy-4 plates: X-ray diffraction and the self-consistent model. Acta Mater 55:4369–4379CrossRefGoogle Scholar
  54. 54.
    Renault P-O, Le Bourhis E, Villain P et al (2003) Measurement of the elastic constants of textured anisotropic thin films from X-ray diffraction data. Appl Phys Lett 83:473. doi: 10.1063/1.1594280 CrossRefGoogle Scholar
  55. 55.
    Faurie D, Renault P-O, Le Bourhis E et al (2006) Elastic behavior of polycrystalline thin films inferred from in situ micromechanical testing and modeling. Appl Phys Lett 89:061911. doi: 10.1063/1.2335779 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Viwanou Hounkpati
    • 1
    Email author
  • Sylvain Fréour
    • 1
  • David Gloaguen
    • 1
  • Vincent Legrand
    • 1
  1. 1.Centrale Nantes, Institut de Recherche en Génie Civil et Mécanique (UMR CNRS 6183), Equipe Etat Mécanique et MicrostructureUniversité de NantesSaint-Nazaire cedexFrance

Personalised recommendations