Skip to main content
Log in

Tuning a hydrophilic nanobelt’s crystal lattice for interface-tailored nanocompositing with a hydrophobic polymer

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanoblending hydrophilic nanofillers thoroughly into hydrophobic polymer matrices has long been challenging, especially if involving no pre-functionalization on a 1D ceramic nanomaterial. Here we report a facile approach to fine-tuning of sodium titanate (Na2Ti3O7) nanobelt’s (NB) surface chemistry widely by exchanging the NB’s crystal lattice cations, for successfully nanoblending the low-cost and versatile NBs into the poly(vinyl benzyl chloride) or p(VBC) and the sulfonated form of pVBC’s [or sp(VBC)] matrixes. For the first time, the adjustable nanocompositing showed a long-sought workability in not only in situ radical polymerization of VBC monomer but also ex situ nanoblending of the p(VBC), with the NBs. The resultant nanocomposites possess an unusual surface versatility that can be tailored from being hydrophilic to being hydrophobic by design. This method concludes a generalized and industry-viable approach to mass-producing nanocomposites of many types facilely at low-cost, especially for large scale industries such as packaging materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bell CA, Smith SV, Whittaker MR, Whittaker AK, Gahan LR, Monteiro MJ (2006) Surface-functionalized polymer nanoparticles for selective sequestering of heavy metals. Adv Mat 18(6):582–586

    Article  Google Scholar 

  2. Haroun A, Youssef AM (2011) ’Synthesis and electrical conductivity evaluation of novel hybrid poly (methyl methacrylate)/titanium dioxide nanowires. Synth Met 161(19–20):2063–2069

    Article  Google Scholar 

  3. Xu G-C, Li A-Y, Zhang L-D, Wu G-S, Yuan X-Y, Xie T (2003) Synthesis and characterization of silica nanocomposite in situ photopolymerization. J Appl Polym Sci 90(3):837–840

    Article  Google Scholar 

  4. Patel H, Somani R, Bajaj H, Jasra R (2006) Nanoclays for polymer nanocomposites, paints, inks, greases, and cosmetics formulations, drug delivery vehicle and waste water treatment. Bull Mat Sci 29(2):133–145

    Article  Google Scholar 

  5. Yeh J, Chang K (2008) Polymer/layered silicate nanocomposite anticorrosive coatings. J Ind Eng Chem 14(3):275–291

    Article  Google Scholar 

  6. Frackowiak E, Khomenko V, Jurewicz K, Lota K, Beguin F (2006) Supercapacitors based on conducting polymers/nanotubes composites. J Power Sources 153(2):413–418

    Article  Google Scholar 

  7. Mdarhri A, Brosseau C, Carmona F (2007) Microwave dielectric properties of carbon black filled polymers under uniaxial tension. J Appl Phys 101(8):084111

    Article  Google Scholar 

  8. Mdarhri A, Carmona F, Brosseau C, Delhaes P (2008) Direct current electrical and microwave properties of polymer-multiwalled carbon nanotubes composites. J Appl Phys 103(5):054303

    Article  Google Scholar 

  9. Qin F, Brosseau C (2012) A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. J Appl Phys 111(6):061301

    Article  Google Scholar 

  10. Fox J, Wie JJ, Greenland B-W, Burattini S, Hayes W, Colguhoun HM, Mackay ME, Rowan SJ (2012) High-strength, healable, supramolecular polymer nanocomposites. J Am Chem Soc 134(11):5362–5368

    Article  Google Scholar 

  11. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud’Homme RK, Brinson LC (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3(6):327–331

    Article  Google Scholar 

  12. Brosseau C, Boulic F, Queffelec P, Bourbigot C, Le Mest Y, Loaec J, Beroual A (1997) Dielectric and microstructure properties of polymer carbon black composites. J Appl Phys 81(2):882

    Article  Google Scholar 

  13. Du F, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI (2004) Nanotube networks in polymer nanocomposites: rheology and electrical conductivity. Macromolecules 37(24):9048–9055

    Article  Google Scholar 

  14. Guo Z, Pereira T, Choi O, Wang Y, Hahn H (2006) Surface functionalized alumina nanoparticle filled polymeric nanocomposites with enhanced mechanical properties. J Mat Chem 16(27):2800–2808

    Article  Google Scholar 

  15. Rittigstein P, Torkelson J (2006) Polymer-nanoparticle interfacial interactions in polymer nanocomposites: confinement effects on glass transition temperature and suppression of physical aging. J Polymer Sci B—Polymer Phys 44(20):2935–2943

    Article  Google Scholar 

  16. Moniruzzaman M, Winey K (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16):5194–5205

    Article  Google Scholar 

  17. Erdem B, Hunsicker RA, Simmons GW, Sudol ED, Dimonie VL, El-Aasser MS (2001) XPS and FTIR Surface Characterization of TiO2 Particles Used in Polymer Encapsulation. Langmuir 17(9):2664–2669

    Article  Google Scholar 

  18. Li W, Ni C, Lin H, Huang C, Shah S (2004) Size dependence of thermal stability of TiO2 nanoparticles. J Appl Phys 96(11):6663–6668

    Article  Google Scholar 

  19. Zhai H, Wang L (2007) Probing the electronic structure and band gap evolution of titanium oxide clusters (TiO2)n-(n=1-10) using photoelectron spectroscopy. J Am Chem Soc 129(10):3022–3026

    Article  Google Scholar 

  20. Okamoto M, Moritaa S, Taguchi H, Kima YH, Kotakaa T, Tateyamab H (2000) Synthesis and structure of smectic clay/poly(methyl methacrylate) and clay/polystyrene nanocomposites via in situ intercalative polymerization. Polymer 41(10):3887–3890

    Article  Google Scholar 

  21. Dzumuzoric E, Jeremic K, Nedeljkovic JM (2007) In situ radical polymerization of methyl methacrylate in a solution of surface modified TiO2 and nanoparticles. Eur Polymer J 43(9):3719–3726

    Article  Google Scholar 

  22. Dong W, Cogbill A, Zhang T, Ghosh S, Tian ZR (2006) Multifunctional, catalytic nanowire membranes and the membrane-based 3D devices. J Phys Chem B 110(34):16819–16822

    Google Scholar 

  23. Fan X, Lin L, Messersmith PB (2006) Surface-initiated polymerization from TiO2 nanoparticle surfaces through a biomimetic initiator: a new route toward polymer–matrix nanocomposites. Composites Sci Technol 66(9):1195–1201

    Article  Google Scholar 

  24. Shirai Y, Kawatsura K, Tsubokawa N (1999) Graft polymerization of vinyl monomers from initiating groups introduced onto polymethylsiloxane-coated titanium dioxide modified with alcoholic hydroxyl groups. Prog Org Coating 36(4):217–224

    Article  Google Scholar 

  25. Ding X, Wang Z, Han D, Zhang Y, Shen Y, Wang Z, Niu L (2006) An effective approach to synthesis of poly(methyl methacrylate)/silica nanocomposites. Nanotechnology 17(19):4796–4801

    Article  Google Scholar 

  26. Jordan J, Jacob KI, Tannenbaum R, Sharaf MA, Jasiuk I (2005) Experimental trends in polymer nanocomposites. Mat Sci Eng: A 393(1–2):1–11

    Article  Google Scholar 

  27. Li Q, Wu Y, Ma W, Xu R, Wu G, Yang W (2010) Synthesis of graft copolymers with polyisobutylene branch chains. Chin J Polym Sci 28(3):449–456

    Article  Google Scholar 

  28. Vink H (1981) A new convenient method for the synthesis of poly (styrenesulfonic acid). Die Makromolekulare Chemie 182(1):279–281

    Article  Google Scholar 

  29. Zarate RA, Fuentes S, Cabrera AL, Fuenzalida VM (2008) Structural characterization of single crystals of sodium titanate nanowires prepared by hydrothermal process. J Cryst Growth 310(15):3630–3637

    Article  Google Scholar 

  30. Kim YI, Salim S, Huq M, Mallouk TE (1991) Visible-light photolysis of hydrogen iodide using sensitized layered semiconductor particles. J Am Chem Soc 113(25):9561–9563

    Article  Google Scholar 

  31. Tian ZR, Yin YG, Suib SL, OYoung CL (1997) Effect of Mg2+ ions on the formation of todorokite type manganese oxide octahedral molecular sieves. Chem Mat 9(5):1126–1133

    Article  Google Scholar 

  32. Tian ZR, Xia GG, Luo J, Suib SL, Navrotsky A (2000) Effects of water, cations, and structure on energetics of layer and framework phases, NaxMgyMnO2•nH2O. J Phys Chem B 104(20):5035–5039

    Google Scholar 

Download references

Acknowledegments

The authors acknowledge the generous help from Mr. S. Michel at the Leibintz-institute for polymer research-Dresden-Germany on the contact angle measurements, and that from Prof. M. Macintosh’s lab at the University of Arkansas on the polymer synthesis. This work was partially supported by the Science and Technology Development Fund (STDF) (Project No. 1908), the US-Egypt Joint Research Grant, and the NSF-MRSEC and NSF-EPSCOR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Abdel Rehim.

Additional information

A. F. Ghanem and R. L. Williams contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanem, A.F., Williams, R.L., Abdel Rehim, M.H. et al. Tuning a hydrophilic nanobelt’s crystal lattice for interface-tailored nanocompositing with a hydrophobic polymer. J Mater Sci 49, 7382–7390 (2014). https://doi.org/10.1007/s10853-014-8394-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8394-x

Keywords

Navigation