Skip to main content
Log in

Influence of melt temperature on the Invar effect in (Fe71.2B24Y4.8)96Nb4 bulk metallic glass

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The influence of melt temperature on the glass formation, physical properties and local structure of (Fe71.2B24Y4.8)96Nb4 bulk metallic glass (BMG) was investigated through X-ray diffractometry, differential scanning calorimetry, thermal dilatation, and Mössbauer spectra tests. Amorphous alloys were formed by fast cooling of the melt from the temperature range of 1573–1773 K. BMG cast from 1623 K has lower Curie temperature and larger spontaneous volume magnetostriction, i.e., stronger Invar effect. The abnormality, which can not be eliminated by annealing, is attributed to the higher amount of Fe–Fe pairs indicated by the hyperfine field distribution. This special local structure is inherited from the melt, which has a liquid–liquid change manifested by an exothermic step region at the temperature range of 1615–1650 K. Through a slow-cooling process, the melt in the liquid–liquid change is frozen to a crystalline structure contained Y2Fe17 phase with a high intensity signal. These findings help explain the correlation between the liquid–liquid change and the structure of cooling products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Han Z, Zhang J, Li Y (2007) Quaternary Fe-based bulk metallic glasses with a diameter of 5 mm. Intermetallics 15:1447–1452

    Article  Google Scholar 

  2. Kim DH, Park JM, Kim WT (2007) Development of quaternary Fe–B–Y–Nb bulk glassy alloys with high glass-forming ability. J Mater Res 22:471–477

    Article  Google Scholar 

  3. Lee S, Kato H, Kubota T, Yubuta K, Makino A, Inoue A (2008) Excellent thermal stability and bulk glass forming ability of Fe–B–Nb–Y soft magnetic metallic glass. Mater Trans 49:506–512

    Article  Google Scholar 

  4. Stoica M, Kolesar V, Bednarcik J, Roth S, Franz H, Eckert J (2011) Thermal stability and magnetic properties of partially Co-substituted (Fe71.2B24Y4.8)96Nb4 bulk metallic glasses. J Appl Phys 109:054901

  5. Masood A, Strom V, Belova L, Rao KV, Agren J (2013) Effect of Ni-substitution on glass forming ability, mechanical, and magnetic properties of FeBNbY bulk metallic glasses. J Appl Phys 113:013505

    Article  Google Scholar 

  6. Tang MB, Yi J, Wang JQ, Wang WH, Zhao JT (2012) Low expansion in [(Fe0.9Co0.1)0.72B0.24Nb0.04]95.5Y4.5 bulk metallic glass. J Non-Cryst Solids 358:470–473

    Article  Google Scholar 

  7. Li J, Yang W, Zhang M, Chen G, Shen B (2013) Thermal stability and crystallization behavior of (Fe0.75−x Dy x B0.2Si0.05)96Nb4 (x = 0–0.07) bulk metallic glasses. J Non-Cryst Solids 365:42–46

    Article  Google Scholar 

  8. Hu Q, Zeng XR, Fu MW (2010) Invar effects of (Fe71.2B24Y4.8)96Nb4 alloy in different structural states. Appl Phys Lett 97:221907

  9. Kumar G, Ohnuma M, Furubayashi T, Ohkubo T, Hono K (2008) Thermal embrittlement of Fe-based amorphous ribbons. J Non-Cryst Solids 354:882–888

    Article  Google Scholar 

  10. Wei S, Yang F, Bednarcik J, Kaban I, Shuleshova O, Meyer A, Busch R (2013) Liquid–liquid transition in a strong bulk metallic glass-forming liquid. Nat Commun 4:2083–2089

    Google Scholar 

  11. Sidorov V, Popel P, Calvo-Dahlborg M, Dahlborg U, Manov V (2001) Heat treatment of iron based melts before quenching. Mater Sci Eng A 304:480–486

    Article  Google Scholar 

  12. Zu FQ, Zhu ZG, Guo LJ, Qin XB, Yang H, Shan WJ (2002) Observation of an anomalous discontinuous liquid-structure change with temperature. Phys Rev Lett 89:125505

  13. Li JJZ, Rhim WK, Kim CP, Samwer K, Johnson WL (2011) Evidence for a liquid–liquid phase transition in metallic fluids observed by electrostatic levitation. Acta Mater 59:2166–2171

    Article  Google Scholar 

  14. Manov V, Popel P, Brook-Levinson E, Molokanov V, Calvo-Dahlborg M, Dahlborg U, Sidorov V, Son L, Tarakanov Y (2001) Influence of the treatment of melt on the properties of amorphous materials: ribbons, bulks and glass coated microwires. Mater Sci Eng A 304:54–60

    Article  Google Scholar 

  15. Popel PS, Sidorov VE (1997) Microheterogeneity of liquid metallic solutions and its influence on the structure and properties of rapidly quenched alloys. Mater Sci Eng A 226–228:237–244

    Article  Google Scholar 

  16. Curiotto S, Battezzati L, Johnson E, Palumbo M, Pryds N (2008) The liquid metastable miscibility gap in the Cu–Co–Fe system. J Mater Sci 43:3253–3258. doi:10.1007/s10853-008-2540-2

    Article  Google Scholar 

  17. Zhu ZW, Zhang HF, Wang H, Ding BZ, Hu ZQ (2008) Influence of casting temperature on the thermal stability of Cu- and Zr-based metallic glasses: theoretical analysis and experiments. J Mater Res 23:2714–2719

    Article  Google Scholar 

  18. Mao J, Zhang HF, Fu HM, Wang AM, Li H, Hu ZQ (2009) The effects of casting temperature on the glass formation of Zr-based metallic glasses. Adv Eng Mater 11:986–991

    Google Scholar 

  19. Mu J, Fu H, Zhu Z, Wang A, Li H, Hu Z, Zhang H (2010) The effect of melt treatment on glass forming ability and thermal stability of Al-based amorphous alloy. Adv Eng Mater 12:1127–1130

    Article  Google Scholar 

  20. Wang Z, Zu F, Zhang Z, Cui X, Wang L, Sun G (2012) Dependence of GFA and crystallization behaviors of Al86Ni9La5 metallic glass on its original liquid state. Adv Eng Mater 14:898–901

    Article  Google Scholar 

  21. Liu J, Guo J, Hu X, Guo S, Meng W, Xiao Q (2013) Effect of melt superheated treatment on glass forming ability and thermal expansion of Gd55Al25Cu10Co10 alloys. J Alloy Compd 581:671–674

    Article  Google Scholar 

  22. Fan C, Liu CT, Chen G, Chen D, Yang X, Liaw PK, Yan HG (2013) Influence of the molten quenching temperature on the thermal physical behavior of quenched Zr-based metallic glasses. Intermetallics 38:19–22

    Article  Google Scholar 

  23. Kumar G, Ohkubo T, Hono K (2009) Effect of melt temperature on the mechanical properties of bulk metallic glasses. J Mater Res 24:2353–2360

    Article  Google Scholar 

  24. Mondal K, Ohkubo T, Toyama T, Nagai Y, Hasegawa M, Hono K (2008) The effect of nanocrystallization and free volume on the room temperature plasticity of Zr-based bulk metallic glasses. Acta Mater 56:5329–5339

    Article  Google Scholar 

  25. Zeng X, Xie S, Hu Q, Fu D, Qian H, Fu M (2011) Influence of melt temperature on the compressive plasticity of a Zr–Cu–Ni–Al–Nb bulk metallic glass. J Mater Sci 46:951–956. doi:10.1007/s10853-010-4839-z

    Article  Google Scholar 

  26. Zhu Z, Zhang H, Wang H, Ding B, Hu Z-Q, Huang H (2009) Influence of casting temperature on microstructures and mechanical properties of Cu50Zr45.5Ti2.5Y2 metallic glass prepared using copper mold casting. J Mater Res 24:3108–3115

    Article  Google Scholar 

  27. Zhu ZW, Zheng SJ, Zhang HF, Ding BZ, Hu ZQ, Liaw PK, Wang YD, Ren Y (2008) Plasticity of bulk metallic glasses improved by controlling the solidification condition. J Mater Res 23:941–948

    Article  Google Scholar 

  28. Shahri F, Beitollahi A (2008) Effect of super-heat treatment and quenching wheel speed on the structure and magnetic properties of Fe–Si–Nb–Cu–B–Al–Ge melt spun ribbons. J Non-Cryst Solids 354:1487–1493

    Article  Google Scholar 

  29. van Schilfgaarde M, Abrikosov IA, Johansson B (1999) Origin of the Invar effect in iron–nickel alloys. Nature 400:46–49

    Article  Google Scholar 

  30. Martin Rodriguez D, Plazaola F, Garitaonandia JS, Jimenez JA, Apinaniz E (2012) Influence of volume and Fe local environment on magnetic properties of Fe-rich Fe–Al alloys. Intermetallics 24:38–49

    Article  Google Scholar 

  31. Lin XH, Johnson WL (1995) Formation of Ti–Zr–Cu–Ni bulk metallic glasses. J Appl Phys 78:6514–6519

    Article  Google Scholar 

  32. Huang XM, Wang XD, He Y, Cao QP, Jiang JZ (2009) Are there two glass transitions in Fe–M–Y–B (M = Mo, W, Nb) bulk metallic glasses? Scripta Mater 60:152–155

    Article  Google Scholar 

  33. Zeng XR, Hu Q, Fu MW, Xie SH (2012) Investigation of the free volume change of Fe41Co7Cr15Mo14C15B6Y2 bulk metallic glass using the cyclic thermal dilatation test. J Non-Cryst Solids 358:2682–2686

    Article  Google Scholar 

  34. Hajlaoui K, Yousfi MA, Tourki Z, Vaughan G, Yavari AR (2010) On the free volume kinetics during isochronal structural relaxation of Pd-based metallic glass: effect of temperature and deformation. J Mater Sci 45:3344–3349. doi:10.1007/s10853-010-4355-1

    Article  Google Scholar 

  35. Borrego JM, Blázquez JS, Lozano-Pérez S, Kim JS, Conde CF, Conde A (2014) Structural relaxation in Fe(Co)SiAlGaPCB amorphous alloys. J Alloy Compd 584:607–610

    Article  Google Scholar 

  36. Olszewski J (2000) Magnetic interactions in amorphous and nanocrystalline Fe90Zr7Cu1B2 alloy. Hyperfine Interact 131:83–90

    Article  Google Scholar 

  37. Brzozka K, Slawska-Waniewska A, Nowicki P, Jezuita K (1997) Hyperfine magnetic fields in FeZrB(Cu) alloys. Mater Sci Eng A 226–228:654–658

    Article  Google Scholar 

  38. Kaban I, Kohler M, Ratke L, Nowak R, Sobczak N, Mattern N, Eckert J, Greer AL, Sohn SW, Kim DH (2012) Phase separation in monotectic alloys as a route for liquid state fabrication of composite materials. J Mater Sci 47:8360–8366. doi:10.1007/s10853-012-6660-3

    Article  Google Scholar 

  39. Andreev AV, Daniš S (2009) Spontaneous magnetostriction of R2Fe13.6Si3.4 (R = U, Lu). J Alloy Compd 470:24–26

    Article  Google Scholar 

  40. Hao YM, Gao Y, Wang BW, Qu JP, Li YX, Hu JF, Deng JC (2001) Negative thermal expansion and magnetic properties of Y2Al3Fe14−x Mn x compounds. Appl Phys Lett 78:3277–3279

    Article  Google Scholar 

  41. Lukoyanov AV, Kokorina EE, Medvedev MV, Nekrasov IA (2009) Ab initio exchange interactions and magnetic properties of the Gd2Fe17 iron sublattice: rhombohedral versus hexagonal phases. Phys Rev B 80:104409

  42. Tereshina EA, Andreev AV (2010) Magnetization and specific heat study of metamagnetism in Lu2Fe17-based intermetallic compounds. Intermetallics 18:1205–1210

    Article  Google Scholar 

  43. Wang JL, Campbell SJ, Tegus O, Marquina C, Ibarra MR (2007) Magnetovolume effect and magnetic properties of Dy2Fe17−x Mn x . Phys Rev B 75:174423

  44. Wang JL, Studer AJ, Kennedy SJ, Zeng R, Dou SX, Campbell SJ (2012) Magnetovolume effect in Ho2Fe17−x Mn x compounds. J Appl Phys 111:07A91

  45. Mattern N, Eckert J, Kuhn U, Hermann H, Sakowski J, Herms G, Neuefeind J (2002) Structural behavior of Zr52Ti5Cu18Ni15Al10 bulk metallic glass at high temperatures. Appl Phys Lett 80:4525–4527

    Article  Google Scholar 

  46. Mizuno A, Matsumura S, Watanabe M, Kohara S, Takata M (2005) High-energy X-ray diffraction study of liquid structure of metallic glass-forming Zr70Cu30 alloy. Mater Trans 46:2799–2802

    Article  Google Scholar 

  47. Kordel T, Holland-Moritz D, Yang F, Peters J, Unruh T, Hansen T, Meyer A (2011) Neutron scattering experiments on liquid droplets using electrostatic levitation. Phys Rev B 83:104205

Download references

Acknowledgements

The authors are grateful for the funding support from the Innovation and Technology Commission of Hong Kong Government under the project of ITS/228/11 and the National Natural Science Foundation of China for the Grant of No. 51201109.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. W. Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Q., Sheng, H.C., Fu, M.W. et al. Influence of melt temperature on the Invar effect in (Fe71.2B24Y4.8)96Nb4 bulk metallic glass. J Mater Sci 49, 6900–6906 (2014). https://doi.org/10.1007/s10853-014-8392-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8392-z

Keywords

Navigation