Skip to main content
Log in

Near infrared nonlinearity in silver telluride-core/carbon-sheath and tellurium-core/carbon-sheath nanostructures synthesized by reduction carbonization approach

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A reduction-carbonization approach for the formation of one-dimensional (1D) silver telluride nanocables and tellurium nanorods with a sheath of amorphous carbon are proposed. Here the carbon shell is obtained with the assistance of glucose which behaves as carbonizing agent; silver nitrate and sodium tellurite are utilized as precursors and ethylene glycol acts as reducing agent. The results demonstrate the Ag2Te/C and Te/C nanostructures with average diameters of 150 and 100 nm, respectively. The crystal structures, morphology, and composition are studied using X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, and Energy-dispersive X-ray spectroscopy characterizations. The formation mechanism of amorphous carbon sheath and finally core–shell nanostructures is elaborated on the basis of the experimental results. In addition, nonlinear absorption and refraction coefficients along with 3rd order nonlinear optical properties are investigated by open/closed-aperture Z-scan measurements using femtosecond pulse laser at 800 nm in a systematic way. This study provides a guide to the nonlinear properties, which may hold promise as advanced materials for various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wu Y, Yang PD (2000) Germanium/carbon core-sheath nanostructures. Appl Phys Lett 77:43–45

    Article  Google Scholar 

  2. Lauhon LJ, Gudiksen MS, Wang DL, Lieber CM (2002) Epitaxial core-shell and core-multi-shell nanowire heterostructures. Nature 420:57–61

    Article  Google Scholar 

  3. Li Q, Wang CR (2003) One step fabrication of uniform Si-core/CdSe-sheath nanocables. J Am Chem Soc 125:9892–9893

    Article  Google Scholar 

  4. Zhang Y, Suenage K, Colliex C, Iijima S (1998) Coaxial nanocable: silicon carbide and silicon oxide sheathed with boron nitride and carbon. Science 281:973–975

    Article  Google Scholar 

  5. Cushing BL, Kolesnichenko VL, Connor CJO (2004) Recent advances in the liquid-phase synthesis of inorganic nanoparticles. Chem Rev 104:3893–3946

    Article  Google Scholar 

  6. Wang WZ, Xiong SL, Chen LY, Xi BJ, Zhou HY, Zhang ZD (2006) Formation of flexible Ag/C coaxial nanocables through a novel solution process. Cryst Growth Des 6:2422–2426

    Article  Google Scholar 

  7. Morales AM, Lieber CM (1998) A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279:208–211

    Article  Google Scholar 

  8. Yin YD, Lu Y, Sun YG, Xia YN (2002) Silver nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica. Nano Lett 2:427–430

    Article  Google Scholar 

  9. Song XC, Zhao Y, Zheng YF, Yang E, Chen LZ, Fu FM (2009) Fabrication and characterization of Te/C nanocables and carbonaceous nanotubes. Cryst Growth Des 9:344–347

    Article  Google Scholar 

  10. Xi G, Wang C, Wang X, Qian Y, Xiao H (2008) Te/carbon and Se/carbon nanocables: size-controlled in situ hydrothermal synthesis and applications in preparing metal M/carbon nanocables (M = tellurides and selenides). J Phys Chem 112:965–971

    Google Scholar 

  11. Jang J, Lim BK, Lee J, Hycon T (2001) Fabrication of a novel polypyrrole/poly(methyl methacrylate) coaxial nanocable using mesoporous silica as a nanoreactor. Chem Commun 1:83–84

    Article  Google Scholar 

  12. Obare SO, Jana NR, Murphy CJ (2001) Preparation of polystyrene- and silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes. Nano Lett 1:601–603

    Article  Google Scholar 

  13. Mayya KS, Gittins DI, Dibaj AM, Caruso F (2001) Nanotubes prepared by templating sacrificial nickel nanorods. Nano Lett 1:727–730

    Article  Google Scholar 

  14. Xie Y, Qiao Z, Chen M, Liu X, Qian Y (1999) γ-Irradiation route to semiconductor/polymer nanocable fabrication. Adv Mater 11:1512–1515

    Article  Google Scholar 

  15. Qian HS, Yu SH, Luo LB, Gong JY, Fei LF, Liu XM (2006) Synthesis of uniform Te @ Carbon-rich composite nanocables with photoluminescence properties and carbonaceous nanofibers by the hydrothermal carbonization of glucose. Chem Mat 18:2102–2108

    Article  Google Scholar 

  16. Hu XL, Yu JC, Gong JM (2007) A facile decoring route to carbon nano test tubes. J Phys Chem C 111:5830–5834

    Article  Google Scholar 

  17. Song XC, Zhao Y, Zheng YF, Yang E, Chen WQ, Fang YQ (2008) Fabrication of Se/C coaxial nanocables through a novel solution process. J Phys Chem C 112:5352–5355

    Article  Google Scholar 

  18. Song XC, Zhao Y, Yang E, Zheng YF, Chen LZ, Fu FM (2008) Fabrication and characterization of Te/C nanocables and carbonaceous nanotubes. Cryst Growth Des 9:344–347

    Article  Google Scholar 

  19. Lee J, Govorov AO, Kotov NA (2005) Bioconjugated superstructures of CdTe nanowires and nanoparticles: multistep cascade Förster resonance energy transfer and energy channeling. Nano Lett 5:2063–2069

    Article  Google Scholar 

  20. Tan SS, Tang ZY, Liang X, Kotov NA (2004) Resonance tunneling diode structures on CdTe nanowires made by conductive AFM. Nano Lett 4:1637–1641

    Article  Google Scholar 

  21. Wisher AC, Bronstein I, Chechik V (2006) Thiolated PAMAM dendrimer-coated CdSe/ZnSe nanoparticles as proteintransfection agents. Chem Commun 15:1637–1639

    Article  Google Scholar 

  22. Sridharan K, Tamilselvan V, Yuvaraj D, Rao KN, Philip R (2012) Synthesis and nonlinear optical properties of Lead Telluride nanorods. Opt Mater 34:639–645

    Article  Google Scholar 

  23. Tamilselvan V, Kishore S, Rao KN, Philip R (2010) Optical nonlinearity in Lead Sulfide microtowers. J Phys D Appl Phys 43:385–402

    Article  Google Scholar 

  24. Sridharan K, Ollakkan MS, Philip R, Park TJ (2013) Non-hydrothermal synthesis and optical limiting properties of one-dimensional Se/C, Te/C and Se–Te/C core–shell nanostructures. Carbon 63:263–273

    Article  Google Scholar 

  25. Riggs JE, Walker DB, Carroll DL, Sun YP (2000) Optical limiting properties of suspended and solubilized carbon nanotubes. J Phys Chem B 104:7071–7076

    Article  Google Scholar 

  26. Narayanan TN, Sandeep CSS, Shaijumon MM, Ajayan PM, Philip R, Anantharaman MR (2009) The synthesis of high coercivity cobalt-in-carbon nanotube hybrid structures and their optical limiting properties. Nanotech 20:285–702

    Google Scholar 

  27. Anand B, Addo NS, Muthukumar S, Sai SSS, Philip R, Mitra S (2011) Improved optical limiting in dispersible carbon nanotubes and their metal oxide hybrids. Carbon 49:4767–4773

    Article  Google Scholar 

  28. Tutt LW, Kost A (1992) Optical limiting performance of C60 and C70 solutions. Nature 356:225–226

    Article  Google Scholar 

  29. Gvishi R, Bhawalker JD, Kumar ND, Ruland G, Narang U, Prasad PN et al (1995) Multiphasic nanostructured composites for photonics: fullerene-doped monolith glass. Chem Mater 7:2199–2202

    Article  Google Scholar 

  30. Wang J, Hernandez Y, Lotya M, Coleman JN, Blau WJ (2009) Broadband nonlinear optical response of graphene dispersions. Adv Mater 21:2430–2435

    Article  Google Scholar 

  31. Chantharasupawong P, Philip R, Narayanan NT, Sudeep PM, Mathkar A, Ajayan PM et al (2012) Optical power limiting in fluorinated graphene oxide: an insight into the nonlinear optical properties. J Phys Chem C 116:25955–25961

    Article  Google Scholar 

  32. Cao GS, Dong CW, Wang L, Liu ZS (2009) Selected-control synthesis of Te nanowires and Te/C nanocables by adjusting hydrothermal temperature. Mater Lett 63:1778–1780

    Article  Google Scholar 

  33. Mayers B, Xia YN (2002) One-dimensional nanostructures of trigonal tellurium with various morphologies can be synthesized using a solution-phase approach. J Mater Chem 12:1875–1881

    Article  Google Scholar 

  34. Yong SM, Muralidharan P, Jo SH, Kim DK (2010) One-step hydrothermal synthesis of CdTe nanowires with amorphous carbon sheaths. Mater Lett 64:1551–1554

    Article  Google Scholar 

  35. Seo JT, Ma SM, Lee K, Tabibi B, Rankins C, Muhoro P et al (2004) Cadmium chalcogenide semiconductor nanocrystals for optical power limiting application. Phys Stat Sol 1:771–774

    Article  Google Scholar 

  36. Seo JT, Ma SM, Lee K, Brown H, Jackson A, Skyles T, Cubbage NM, Tabibi B, Yoo KP et al (2005) Highly porous silica nanoaerogels for ultrafast nonlinear optical applications. Key Eng Mats 287:352–357

    Article  Google Scholar 

  37. Bahae MS, Said AA, Wei TH, Hagon DJ, Stryland EWV (1990) Sensitive measurement of optical nonlinearities using a single beam. IEEE J Quantum Electron 26:760–769

    Article  Google Scholar 

  38. Wang Y, Cheng LT (1992) Nonlinear optical properties of fullerenes and charge-transfer complexes of fullerenes. J Phys Chem 96:1530–1532

    Article  Google Scholar 

  39. Tian YP, Lu ZL, You XZ (1999) Structure and third-order optical property: studies on metal bridge biferrocene complexes. Acta Chim Sinica 57:1068–1217

    Google Scholar 

  40. Bertarelli C, Gallazzi MC, Lucotti A, Zerbi G (2003) Reversible switching of molecular nonlinear optical properties of photochromic diarylethene systems. Synth Met 139:933–935

    Article  Google Scholar 

  41. Trujillo A, Fuentealba M, Carrillo D, Manzur C, Rak IL, Hamon JR, Saillard JY (2010) Synthesis, spectral, structural, second-order nonlinear optical properties and theoretical studies on new organometallic donor-acceptor substituted nickel(II) and copper(II) unsymmetrical schiff-base complexes. Inorg Chem 49:2750–2764

    Article  Google Scholar 

  42. Liu Y, Wang H, Zhang J, Li S, Wang C, Ding H, Wu J, Tian Y (2014) Synthesis, crystal structures and third-order nonlinear optical properties in the near-IR range of two novel Ni(II) complexes. Opt Mater 36:687–696

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (61275201), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-10-0261), the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), P. R. China, and the Open Program of State Key Lab on integrated Optoelectronics, P. R. China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yumin Liu or Xiuli Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manzoor, S., Liu, Y., Fu, X. et al. Near infrared nonlinearity in silver telluride-core/carbon-sheath and tellurium-core/carbon-sheath nanostructures synthesized by reduction carbonization approach. J Mater Sci 49, 6892–6899 (2014). https://doi.org/10.1007/s10853-014-8391-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8391-0

Keywords

Navigation