Skip to main content
Log in

Beta-cyclodextrin-based molecular-recognizable smart microcapsules for controlled release

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Novel molecular-recognizable smart microcapsules for controlled release are successfully fabricated in two steps. Firstly, monodispersed poly(N-isopropylacrylamide-co-acrylic acid) microcapsules are prepared via microfluidic emulsion template synthesis; and then, β-cyclodextrin groups are introduced onto the microcapsules by a condensation reaction. The results of Fourier transform infrared spectrometry confirm that β-cyclodextrin moieties are successfully immobilized onto microcapsules by the condensation reaction between carboxylic groups of acrylic acid components on the microcapsules and amino groups of modified β-cyclodextrin monomers. The resultant poly(N-isopropylacrylamide-co-acrylic acid/aminated β-cyclodextrin) (PNA-ECD) microcapsules show a narrow size distribution. The volume phase transition temperature of prepared PNA-ECD microcapsules exhibits a positive shift in the solution containing model guest molecules 2-naphthalenesulfonic acid (NS). Upon recognizing the guest molecules NS, the PNA-ECD microcapsules show an isothermal and reversible molecular-recognizable swelling behavior. Moreover, the release rate of model drug molecules Fluorescein isothiocyanate-labeled dextran loaded in the microcapsules dramatically increases upon recognizing NS molecules. The results provide valuable guidance for the design and fabrication of monodispersed molecular-recognizable microcapsules for controlled release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chu LY, Park SH, Yamaguchi T, Nakao SI (2002) Preparation of micron-sized monodispersed thermoresponsive core-shell microcapsules. Langmuir 18:1856–1864

    Article  Google Scholar 

  2. Chen FM, Lu H, Wu LA, Gao LN, An Y, Zhang J (2013) Surface-engineering of glycidyl methacrylated dextran/gelatin microcapsules with thermo-responsive poly(N-isopropylacrylamide) gates for controlled delivery of stromal cell-derived factor-1α. Biomaterials 34:6515–6527

    Article  Google Scholar 

  3. Cheng CJ, Chu LY, Ren PW, Zhang J, Hu L (2007) Preparation of monodisperse thermo-sensitive poly(N-isopropylacrylamide) hollow microcapsules. J Colloid Interface Sci 313:383–388

    Article  Google Scholar 

  4. Choi CH, Jung JH, Kim DW, Chung YM, Lee CS (2008) Novel one-pot route to monodisperse thermosensitive hollow microcapsules in a microfluidic system. Lab Chip 8:1544

    Article  Google Scholar 

  5. Kang MK, Kim JC (2010) Preparations and temperature- and pH-dependent release property of ethylcellulose microcapsules containing N-isopropylacrylamide copolymer. J Appl Polym Sci 118:421–427

    Article  Google Scholar 

  6. Rahman MM, Elaissari A (2012) A versatile method for the preparation of rigid submicron hollow capsules containing a temperature responsive shell. J Mater Chem 22:1173–1179

    Article  Google Scholar 

  7. Trongsatitkul T, Budhlall BM (2011) Multicore–shell PNIPAm-co-PEGMa microcapsules for cell encapsulation. Langmuir 27:13468–13480

    Article  Google Scholar 

  8. Wang A, Tao C, Cui Y, Duan L, Yang Y, Li J (2009) Assembly of environmental sensitive microcapsules of PNIPAAm and alginate acid and their application in drug release. J Colloid Interface Sci 332:271–279

    Article  Google Scholar 

  9. Yu YL, Zhang MJ, Xie R, Ju XJ, Wang JY, Pi SW, Chu LY (2012) Thermo-responsive monodisperse core–shell microspheres with PNIPAM core and biocompatible porous ethyl cellulose shell embedded with PNIPAM gates. J Colloid Interface Sci 376:97–106

    Article  Google Scholar 

  10. Yun J, Kim HI (2010) Control of release characteristics in pH-sensitive poly(vinyl alcohol)/poly(acrylic acid) microcapsules containing chemically treated alumina core. J Appl Polym Sci 115:1853–1858

    Article  Google Scholar 

  11. Wei J, Ju XJ, Xie R, Mou CL, Lin X, Chu LY (2011) Novel cationic pH-responsive poly(N, N-dimethylaminoethyl methacrylate) microcapsules prepared by a microfluidic technique. J Colloid Interface Sci 357:101–108

    Article  Google Scholar 

  12. Liu L, Yang JP, Ju XJ, Xie R, Liu YM, Wang W, Zhang JJ, Niu CH, Chu LY (2011) Monodisperse core-shell chitosan microcapsules for pH-responsive burst release of hydrophobic drugs. Soft Matter 7:4821

    Article  Google Scholar 

  13. Li C, Luo GF, Wang HY, Zhang J, Gong YH, Cheng SX, Zhuo RX, Zhang XZ (2011) Host-guest assembly of pH-responsive degradable microcapsules with controlled drug release behavior. J Phys Chem C 115:17651–17659

    Article  Google Scholar 

  14. Jia Y, Fei J, Cui Y, Yang Y, Gao L, Li J (2011) pH-responsive polysaccharide microcapsules through covalent bonding assembly. J Chem Commun 47:1175–1177

    Article  Google Scholar 

  15. Broaders KE, Pastine SJ, Grandhe S, Fréchet JM (2011) Acid-degradable solid-walled microcapsules for pH-responsive burst-release drug delivery. Chem Commun 47:665–667

    Article  Google Scholar 

  16. Han R, Wang F, Ren TR (2013) Fabrication of pH-responsive microcapsules by precipitation polymerization on calcium carbonate templates. J Appl Polym Sci 129:3601–3605

    Article  Google Scholar 

  17. Zhang MJ, Wang W, Xie R, Ju XJ, Liu L, Gu YY, Chu LY (2013) Microfluidic fabrication of monodisperse microcapsules for glucose-response at physiological temperature. Soft Matter 9:4150–4159

    Article  Google Scholar 

  18. Pi SW, Ju XJ, Wu HG, Xie R, Chu LY (2010) Smart responsive microcapsules capable of recognizing heavy metal ions. J Colloid Interface Sci 349:512–518

    Article  Google Scholar 

  19. Liu Z, Liu L, Ju XJ, Xie R, Zhang B, Chu LY (2011) K+-recognition capsules with squirting release mechanisms. Chem Commun 47:12283–12285

    Article  Google Scholar 

  20. Chu LY, Liang YJ, Chen WM, Ju XJ, Wang HD (2004) Preparation of glucose-sensitive microcapsules with a porous membrane and functional gates. Colloids Surf B Biointerfaces 37:9–14

    Article  Google Scholar 

  21. Chu LY, Yamaguchi T, Nakao SI (2002) A molecular-recognition microcapsule for environmental stimuli-responsive controlled release. Adv Mater 14:386–389

    Article  Google Scholar 

  22. Zeng Y, Wang XL, Yang YJ, Chen JF, Fu J, Tao X (2011) Assembling photosensitive capsules by phthalocyanines and polyelectrolytes for photodynamic therapy. Polymer 52:1766–1771

    Article  Google Scholar 

  23. Xiao W, Chen WH, Zhang J, Li C, Zhuo RX, Zhang XZ (2011) Design of a photoswitchable hollow microcapsular drug delivery system by using a supramolecular drug-loading approach. J Phys Chem B 115:13796–13802

    Article  Google Scholar 

  24. Bogdanowicz KA, Tylkowski B, Giamberini M (2013) Preparation and characterization of light-sensitive microcapsules based on a liquid crystalline polyester. Langmuir 29:1601–1608

    Article  Google Scholar 

  25. Lee CH, Wang YJ, Kuo SM, Chang SJ (2004) Microencapsulation of parathyroid tissue with photosensitive poly(l-lysine) and short chain alginate-co-MPEG. Artif Organs 28:537–542

    Article  Google Scholar 

  26. Guo H, Zhao X, Wang J (2005) Synthesis of functional microcapsules containing suspensions responsive to electric fields. J Colloid Interface Sci 284:646–651

    Article  Google Scholar 

  27. Yuan J, Lai Y, Duan J, Zhao Q, Zhan J (2012) Synthesis of a β-cyclodextrin-modified Ag film by the galvanic displacement on copper foil for SERS detection of PCBs. J Colloid Interface Sci 365:122–126

    Article  Google Scholar 

  28. Shen J, Wu YN, Fu L, Zhang B, Li F (2013) Preparation of doped TiO2 nanofiber membranes through electrospinning and their application for photocatalytic degradation of malachite green. J Mater Sci 49:2303–2314. doi:10.1007/s10853-013-7928-y

    Article  Google Scholar 

  29. Birke V, Mattik J, Runne D (2004) Mechanochemical reductive dehalogenation of hazardous polyhalogenated contaminants. J Mater Sci 39:5111–5116. doi:10.1023/B:JMSC.0000039192.61817.dd

    Article  Google Scholar 

  30. Song WL, Li A, Xu XQ (2003) Water solubility enhancement of phthalates by cetyltrimethylammonium bromide and β-cyclodextrin. Ind Eng Chem Res 42:949–955

    Article  Google Scholar 

  31. Mathapa BG, Paunov VN (2013) Fabrication of novel cyclodextrin-polyallylamine hydrochloride co-polymeric microcapsules by templating oil-in-water emulsions. Soft Matter 9:4780–4788

    Article  Google Scholar 

  32. Yang M, Xie R, Wang JY, Ju XJ, Yang L, Chu LY (2010) Gating characteristics of thermo-responsive and molecular-recognizable membranes based on poly(N-isopropylacrylamide) and β-cyclodextrin. J Membr Sci 355:142–150

    Article  Google Scholar 

  33. Yang M, Chu LY, Xie R, Wang C (2008) Molecular-recognition-induced phase transitions of two thermo-responsive polymers with pendent β-cyclodextrin groups. Macromol Chem Phys 209:204–211

    Article  Google Scholar 

  34. Ohashi H, Hiraoka Y, Yamaguchi T (2006) An autonomous phase transition-complexation/decomplexation polymer system with a molecular recognition property. Macromolecules 39:2614–2620

    Article  Google Scholar 

  35. Ohashi H, Abe T, Tamaki T, Yamaguchi T (2012) Influence of spacer length between actuator and sensor on their mutual communications in poly(N-isopropylacrylamide-co-β-cyclodextrin), an autonomous coordinative shrinking/swelling polymer. Macromolecules 45:9742–9750

    Article  Google Scholar 

  36. Li L, Guo XH, Fu L, Prud’homme RK, Lincoln SF (2008) Complexation behavior of α-, β-, and γ-cyclodextrin in modulating and constructing polymer networks. Langmuir 24:8290–8296

    Article  Google Scholar 

  37. Guo XH, Abdala AA, May BL, Lincoln SF, Khan SA, Prud’homme RK (2005) Novel associative polymer networks based on cyclodextrin inclusion compounds. Macromolecules 38:3037–3040

    Article  Google Scholar 

  38. Li L, Guo XH, Wang J, Liu P, Prud’homme RK, May BL, Lincoln SF (2008) Polymer networks assembled by host-guest inclusion between adamantyl and β-cyclodextrin substituents on poly(acrylic acid) in aqueous solution. Macromolecules 41:8677–8681

    Article  Google Scholar 

  39. Zhang B, Ju XJ, Xie R, Liu Z, Pi SW, Chu LY (2012) Comprehensive effects of metal ions on responsive characteristics of p(NIPAM-co-B18C6Am). J Phys Chem B 116:5527–5536

    Article  Google Scholar 

  40. Poptoshev E, Rutland MW, Claesson PM (1999) Surface forces in aqueous polyvinylamine solutions. I. glass surfaces. Langmuir 15:7789–7794

    Article  Google Scholar 

  41. Cho J, Heuzey MC, Bégin A, Carreau PJ (2006) Viscoelastic properties of chitosan solutions: effect of concentration and ionic strength. J Food Eng 74:500–515

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from the National Natural Science Foundation of China (21136006, 21036002) and the Program for New Century Excellent Talents in University (NCET-11-0352).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Xie.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 141 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Xie, R., Liang, WG. et al. Beta-cyclodextrin-based molecular-recognizable smart microcapsules for controlled release. J Mater Sci 49, 6862–6871 (2014). https://doi.org/10.1007/s10853-014-8388-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8388-8

Keywords

Navigation