Advertisement

Journal of Materials Science

, Volume 49, Issue 18, pp 6225–6239 | Cite as

Controlling foam morphology of polystyrene via surface chemistry, size and concentration of nanosilica particles

  • Seyed Esmaeil Zakiyan
  • Mohamad Hossein Navid FamiliEmail author
  • Mohammad Ako
Article

Abstract

Controlling cell morphologies of polymeric foams is an important part of controlling foam properties. In this study, the effects of particle size, particle content, and particle surface chemistry on cell nucleation in nanosilica/polystyrene (PS) composites are investigated. A theoretical hypothesis on the effect of nanoparticle size on cell nucleation in PS matrix foam was examined. The surface chemistry of nanosilica particles was studied by modifying them with Vinyltriethoxysilane (VTES) silane coupling agent. The microcellular porous materials of neat and composite PS were prepared by batch foaming technique (pressure quench) using supercritical carbon dioxide (ScCO2) as a blowing agent. It was found that the size of the pores decreases and the cell density increases with the decrease in nanosilica size and the increase of silica loading. It was also observed that the surface treatment of the nanosilica particles have substantial effect on the decrease of the cell size and the increase of the cell density.

Keywords

Foam Silica Nanoparticles Nucleate Agent Silane Coupling Agent Foam Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to thank Tarbiat Modares University because of financial supports and providing the technological facilities.

References

  1. 1.
    Saenz EE, Carlsson LA, Karlsson AM (2011) In situ analysis of crack propagation in polymer foams. J Mater Sci 46:5487–5494. doi: 10.1007/s10853-011-5491-y CrossRefGoogle Scholar
  2. 2.
    Chen G, Ushida T, Tateishi T (2001) Development of biodegradable porous scaffolds for tissue engineering. Mater Sci Eng 17:63–69CrossRefGoogle Scholar
  3. 3.
    Wolff F, Münstedt H (2011) Continuous direct melt foaming of a pre ceramic polymer using carbon dioxide: extrusion device and first results. J Mater Sci 46:6162–6167. doi: 10.1007/s10853-011-5679-1 CrossRefGoogle Scholar
  4. 4.
    Famili MHN, Janani H, Enayati MS (2011) Foaming of a polymer–nanoparticle system: effect of the particle properties. J Appl Polym Sci 119:2847–2856CrossRefGoogle Scholar
  5. 5.
    Janani H, Famili MHN (2010) Investigation of a strategy for well controlled inducement of microcellular and nano cellular morphologies in polymers. J Polym Eng Sci 50:1558–1570CrossRefGoogle Scholar
  6. 6.
    Ishikawa T, Ohshima M (2011) Visual observation and numerical studies of polymer foaming behavior of polypropylene/carbon dioxide system in a core-back injection molding process. J Polym Eng Sci 51:1617–1625CrossRefGoogle Scholar
  7. 7.
    Chen L, Rende D, Schadler LS, Ozisik R (2013) Polymer nanocomposite foams. J Mater Chem A 1:3837–3850CrossRefGoogle Scholar
  8. 8.
    Ding J, Ma W, Song F, Zhong Q (2013) Effect of nano-calcium Carbonate on microcellular foaming of polypropylene. J Mater Sci 48:2504–2511. doi: 10.1007/s10853-012-7039-1 CrossRefGoogle Scholar
  9. 9.
    Alavi Nikje MM, Garmarudi AB, Haghshenas M (2006) Effect of talc filler on physical properties of polyurethane rigid foams. J Polym Plast Technol Eng 45:1213–1217CrossRefGoogle Scholar
  10. 10.
    Naguib HE, Park CB, Lee PC (2003) Effect of talc content on the volume expansion ratio of extruded PP foams. J Cell Plast 39:499–511CrossRefGoogle Scholar
  11. 11.
    Colton JS, Suh N (1987) The nucleation of microcellular thermoplastic foam with additives: part I: theoretical considerations. J Polym Eng Sci 27:485–492CrossRefGoogle Scholar
  12. 12.
    Park CP (1982) Expandable polyolefin compositions and polyolefin foam preparation process. US Patent 4,347,329Google Scholar
  13. 13.
    Huang H-X, Wang J-K (2007) Improving polypropylene microcellular foaming through blending and the addition of nano-calcium carbonate. J Appl Polym Sci 106:505–513CrossRefGoogle Scholar
  14. 14.
    Glenn GM, Orts WJ, Nobes GAR (2001) Starch, fiber and CaCO3 effects on the physical properties of foams made by a baking process. Ind Crop Prod 14:201–212CrossRefGoogle Scholar
  15. 15.
    Hahn K, Weber H, Guenther W, Schillinger B, Weber R (1984) Production of fine-celled foams from styrene polymers. US Patent 4,446,253Google Scholar
  16. 16.
    Juntunen RP, Kumar V, Weller JE, Bezubic WP (2000) Impact strength of high density microcellular poly (vinyl chloride) foams. J Vinyl Addit Technol 6:93–99CrossRefGoogle Scholar
  17. 17.
    Lee S-T (1993) Shear effects on thermoplastic foam nucleation. J Polym Eng Sci 33:418–422CrossRefGoogle Scholar
  18. 18.
    Lee CH, Lee K-J, Jeongand HG, Kim SW (2000) Growth of gas bubbles in the foam extrusion process. Adv Polym Technol 19:97–112CrossRefGoogle Scholar
  19. 19.
    Johnson DE, Krutchen CM, Sharps Jr GV (1982) Polymer foam extrusion system. US Patent 4,344,710Google Scholar
  20. 20.
    Ramesh NS, Rasmussen DH, Campbell GA (1994) The heterogeneous nucleation of microcellular foams assisted by the survival of micro voids in polymers containing low glass transition particles. Part I: mathematical modeling and numerical simulation. J Polym Eng Sci 34:1685–1697CrossRefGoogle Scholar
  21. 21.
    Wang C, Cox K, Campbell GA (1996) Microcellular foaming of polypropylene containing low glass transition rubber particles in an injection molding process. J Vinyl Addit Technol 2:167–169CrossRefGoogle Scholar
  22. 22.
    Shen J, Zeng C, Lee LJ (2005) Synthesis of polystyrene–carbon nanofibers nanocomposite foams. J Polym 46:5218–5224CrossRefGoogle Scholar
  23. 23.
    Zhai W, Park CB, Kontopoulou M (2011) Nanosilica addition dramatically improves the cell morphology and expansion ratio of polypropylene hetero phasic copolymer foams blown in continuous extrusion. J Ind Eng Chem Res 50:7282–7289CrossRefGoogle Scholar
  24. 24.
    Chang Y-W, Lee D, Bae S-Y (2006) Preparation of polyethylene-octene elastomer/clay nanocomposite and microcellular foam processed in supercritical carbon dioxide. J Polym Int 55:184–189CrossRefGoogle Scholar
  25. 25.
    Zheng W, Lee YH, Park CB (2006) The effects of exfoliated nano-clay on the extrusion microcellular foaming of amorphous and crystalline nylon. J Cell Plast 42:271–288CrossRefGoogle Scholar
  26. 26.
    Jiang X-L, Bao J-B, Liu T, Zhao L, Xu Z-M, Yuan W-K (2009) Microcellular foaming of polypropylene/clay nanocomposites with supercritical carbon dioxide. J Cell Plast 45:515–538CrossRefGoogle Scholar
  27. 27.
    Tsimpliaraki A, Tsivintzelis I, Marras SI, Zuburtikudis I, Panayiotou C (2011) The effect of surface chemistry and nanoclay loading on the microcellular structure of porous poly(d, l lactic acid) nanocomposites. J Supercrit Fluids 57:278–287CrossRefGoogle Scholar
  28. 28.
    Zhai W, Yu J, Wu L, Ma W, He J (2006) Heterogeneous nucleation uniformizing cell size distribution in microcellular nanocomposites foams. J Polym 47:7580–7589CrossRefGoogle Scholar
  29. 29.
    Su H-L, Hsu J-M, Pan J-P, Chern C-S (2007) Silica nanoparticles modified with vinyltriethoxysilane and their copolymerization with N,N′-bismaleimide-4,4′-diphenylmethane. J Appl Polym Sci 103:3600–3608CrossRefGoogle Scholar
  30. 30.
    Shen J, Han X, Lee LJ (2006) Nano scaled reinforcement of polystyrene foams using carbon nanofibers. J Cell Plast 42:105–126CrossRefGoogle Scholar
  31. 31.
    Chen L, Ozisik R, Schadler LS (2010) The influence of carbon nanotube aspect ratio on the foam morphology of MWNT/PMMA nanocomposite foams. J Polym 51:2368–2375CrossRefGoogle Scholar
  32. 32.
    Ibeh CC, Bubacz M (2008) Current trends in nanocomposite foams. J Cell Plast 44:493–515CrossRefGoogle Scholar
  33. 33.
    Zeng C, Han X, Lee LJ, Koelling KW, Tomasko DL (2003) Polymer–clay nanocomposite foams prepared using carbon dioxide. J Adv Mater 15:1743–1747CrossRefGoogle Scholar
  34. 34.
    Lee LJ, Zeng C, Cao X, Han X, Shen J, Xu G (2005) Polymer nanocomposite foams. Compos Sci Technol 65:2344–2363CrossRefGoogle Scholar
  35. 35.
    Goren K, Chen L, Schadler LS, Ozisik R (2010) Influence of nanoparticle surface chemistry and size on supercritical carbon dioxide processed nanocomposite foam morphology. J Supercrit Fluids 51:420–427CrossRefGoogle Scholar
  36. 36.
    Yang F, Nelson GL (2004) PMMA/silica nanocomposite studies: synthesis and properties. J Appl Polym Sci 91:3844–3850CrossRefGoogle Scholar
  37. 37.
    Zukienė K, Jankauskaitė V (2005) The effect of surface properties on the adhesion of modified polychloroprene used as adhesive. J Adhes Sci Technol 19:627–638CrossRefGoogle Scholar
  38. 38.
    Fowkes FM (1964) Attractive forces at interfaces. J Ind Eng Chem Res 56:40–52CrossRefGoogle Scholar
  39. 39.
    Yi S, Su Y, Wan Y (2010) Preparation and characterization of vinyltriethoxysilane (VTES) modified silicalite-1/PDMS hybrid pervaporation membrane and its application in ethanol separation from dilute aqueous solution. J Membr Sci 360:341–351CrossRefGoogle Scholar
  40. 40.
    Rong MZ, Zhang MQ, Ruan WH (2006) Surface modification of nano scale fillers for improving properties of polymer nanocomposites: a review. J Mater Sci Technol 22:787–796CrossRefGoogle Scholar
  41. 41.
    Sun Y, Zhang Z, Wong CP (2005) Study on mono-dispersed nano-size silica by surface modification for under fill applications. J Colloid Interface Sci 292:436–444CrossRefGoogle Scholar
  42. 42.
    Goel SK, Beckman EJ (1994) Generation of microcellular polymeric foams using supercritical carbon dioxide. I: effect of pressure and temperature on nucleation. J Polym Eng Sci 34:1137–1147CrossRefGoogle Scholar
  43. 43.
    Fletcher N (1958) Size effect in heterogeneous nucleation. J Chem Phys 29:572–576CrossRefGoogle Scholar
  44. 44.
    Ilsoon L (2000) Adhesion at polymer–solid interfaces: sticker and receptor group effects. PhD thesis, University of DelawareGoogle Scholar
  45. 45.
    Mortezaei M, Famili MHN, Kokabi M (2011) The role of interfacial interactions on the glass-transition and viscoelastic properties of silica/polystyrene nanocomposite. J Compos Sci Technol 71:1039–1045CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Seyed Esmaeil Zakiyan
    • 1
  • Mohamad Hossein Navid Famili
    • 1
    Email author
  • Mohammad Ako
    • 1
  1. 1.Polymer Engineering Group, Faculty of EngineeringTarbiat Modares UniversityTehranIran

Personalised recommendations