Skip to main content
Log in

Thermally induced structural evolution of methylsilicone xerogel monoliths reinforced by titania nanoparticles

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Thermally stable methylsilicone xerogel monoliths were prepared by sol–gel technology with methylsilicone oligomer as precursor and titania nanoparticles as filler. The effects of titania doping and heating temperature on the structure, morphology, and hydrophobic property of xerogels were investigated. The structural evolution under thermal treatment showed that the blank methylsilicone monolith was crushed after 300 °C treatment, but the samples reinforced by titania could retain the intact structure after 500 °C treatment. Thermogravimetric analysis results certified that the thermal degradation of methylsilicone was resisted due to incorporation of TiO2. Fourier transform infrared spectra and 29Si nuclear magnetic resonance results showed that Si–CH3 unit still existed in the reinforced samples, compared with the complete transformation of Si–C to Si–O in the blank methylsilicone after 500 °C treatment. Thus, the hydrophobic property was preserved and certified by measurement of contact angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yang ZL, Niu ZW, Cao XY, Yang ZZ, Lu YF, Hu ZB, Han CC (2003) Template synthesis of uniform 1D mesostructured silica materials and their arrays in anodic alumina membranes. Angew Chem Int Ed 42:4201–4203

    Article  Google Scholar 

  2. Lin KF, Lebedev OI, Tendeloo GV, Jacobs PA, Pescarmona PP (2010) Titanosilicate beads with hierarchical porosity:synthesis and application as epoxidation catalysts. Chem Eur J 16:13509–13518

    Article  Google Scholar 

  3. Li XY, Chen LH, Li Y, Rooke JC, Deng Z, Hu ZY, Liu J, Krief A, Yang XY, Su BL (2012) Tuning the structure of a hierarchically porous ZnO2 for dye molecule. Micropor Mesopor Mater 152:110–121

    Article  Google Scholar 

  4. Brinker CJ, Scherer GW (1990) Sol–gel Science. Academic Press, New York

    Google Scholar 

  5. Bommel MJ, Haan AB (1994) Drying of silica gels with supercritical carbon dioxide. J Mater Sci 29:943–948

    Article  Google Scholar 

  6. Harreld JH, Ebina T, Tsubo N, Stucky G (2002) Manipulation of pore size distributions in silica and ormosil gels dried under ambient pressure conditions. J Non Cryst Solids 298(2):241–251

    Article  Google Scholar 

  7. Amlouk A, MirL El, Kraiem S, Saadoun M, Alaya S, Pierre AC (2008) Luminescence of TiO2:Pr nanoparticles incorporated in silica aerogel. Mater Sci Eng B 146:74–79

    Article  Google Scholar 

  8. Rao AV, Pajonk GM, Parvathy NN (1994) Effect of solvents and catalysts on monolithicity and physical properties of silica aerogels. J Mater Sci 29:1807–1817

    Article  Google Scholar 

  9. Tang Q, Xu Y, Wu D, Sun Y (2006) A study of carboxylic-modified mesoporous silica in controlled delivery for drug famotidine. J Solid State Chem 179(5):1513–1520

    Article  Google Scholar 

  10. Rao AV, Hegde ND, Hirashima H (2007) Absorption and desorption of organic liquids in elastic superhydrophobic silica aerogels. J Colloid Interface Sci 305(1):124–132

    Article  Google Scholar 

  11. Schmidt M, Schwertfeger F (1998) Applications for silica aerogel products. J Non Cryst Solids 225:364–368

    Article  Google Scholar 

  12. Wei TY, Lu SY, Chang YC (2009) A new class of opacified monolithic aerogels of ultralow high-temperature thermal conductivities. J Phys Chem C 113:7424

    Article  Google Scholar 

  13. Hwang S, Hyun S (2004) Capacitance control of carbon aerogel electrodes. J Non Cryst Solids 347:238–245

    Article  Google Scholar 

  14. Li W, Pröbstle H, Fricke J (2003) Electrochemical behavior of mixed CmRF based carbon aerogels as electrode materials for supercapacitors. J Non Cryst Solids 325:1–5

    Article  Google Scholar 

  15. Sarawade PB, Kim JK, Hilonga A, Quang DV, Kim HT (2011) Synthesis of hydrophilic and hydrophobic xerogels with superior properties using sodium silicate. Micropor Mesopor Mater 139:138–147

    Article  Google Scholar 

  16. Rao AV, Bhagat SD, Hirashima H, Pajonk GM (2006) Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor. J Colloid Interface Sci 300:279–285

    Article  Google Scholar 

  17. Janamori K, Aizawa M, Nakanishi K, Hanada T (2007) New transparent methylsilsesquioxane aerogels and xerogels with improved mechanical properties. Adv Mater 19:1589–1593

    Article  Google Scholar 

  18. Rao AV, Kalesh RR (2003) Hydrophobicity and physical properties of TEOS based silica aerogels using phenyltriethoxysilane as a synthesis component. J Mater Sci 38:4407–4413

    Article  Google Scholar 

  19. Jovanovic JD, Govedarica MN, Dvornic PR, Popovic IG (1998) The thermogravimetric analysis of some polysiloxanes. Polym Degrad Stab 61:87–93

    Article  Google Scholar 

  20. Xu HF, Huang YD, Liu L, Song JW, Wang CQ, Zhang LC (2010) Superhydrophobic and porous methylsilicone monoliths prepared by one-step ammonia-catalyzed gelation and ambient pressure drying. J Non Cryst Solids 356:1837–1841

    Article  Google Scholar 

  21. Grassie N, Murray EJ, Holmes PA (1984) The thermal degradation of poly(-(D)-β-hydroxybutyric acid): part 2-Changes in molecular weight. Polym Degrad Stab 6:95–103

    Article  Google Scholar 

  22. Liu YR, Huang YD, Liu L (2007) Thermal stability of POSS/methylsilicone nanocomposites. Compos Sci Technol 67:2864–2876

    Article  Google Scholar 

  23. Min CY, Huang YD, Liu L (2007) Effect of nanosized ferric oxide on the thermostability of methylsilicone resin. J Mater Sci 42:8695–8699

    Article  Google Scholar 

  24. Sim LC, Ramanan SR, Ismail H, Seetharamu KN, Goh TJ (2005) Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes. Thermochim Acta 430:155–165

    Article  Google Scholar 

  25. Xu HF, Zhang CH, Zhang HJ, Song JW, Huang YD, Lv T (2011) The preparation and structural characterization of ambient-dried porous methylsilicone matrix doped with SiO2 powder. J Non Cryst Solids 357:2822–2825

    Article  Google Scholar 

  26. Xu HF, Huang YD, Zhang HJ, Chen QY, Yan GW, Liu L (2012) Preparation and characterization of monolithic methylsilicone xerogels doped with liquid-phase synthesized TiO2. J Non Cryst Solids 358:2922–2926

    Article  Google Scholar 

  27. Yang SF, Liu YH, Guo YP, Zhao JZ, Xu HF, Wang ZC (2002) Preparation of rutile titania nanocrystals by liquid method at room temperature. Mater Chem Phys 77:501–506

    Article  Google Scholar 

  28. Yu JC, Yu J, Zhao J (2002) Enhanced photocatalytic activity of mesoporous and ordinary TiO2 thin films by sulfuric acid treatment. Appl Catal B Environ 36:31–43

    Article  Google Scholar 

  29. Jung HS, Shin H, Kim J, Kim JY, Hong KS (2004) In situ observation of the stability of anatase nanoparticles and their transformation to rutile in an acidic solution. Langmuir 20:11732–11737

    Article  Google Scholar 

  30. Yin H, Wada Y, Kitamura T, Kambe S, Murasawa S, Mori H, Sakata T, Yanagida S (2001) Hydrothermal synthesis of nanosized anatase and rutile TiO2 using amorphous phase TiO2. J Mater Chem 11:1694–1703

    Article  Google Scholar 

  31. LiuYR HuangYD, Liu L (2006) Effect of trisilanolisobutyl-POSS on thermal stability of methylsilicone resin. Polym Degrad Stab 91:2731–2738

    Article  Google Scholar 

  32. Thomas TH, Kendrick TC (1969) Thermal analysis of polydimethylsiloxanes. I. Thermal degradation in controlled atmospheres. J Polym Sci Part A 2 7:537–549

    Article  Google Scholar 

  33. Romo-Uribe A, Mather PT, Haddad TS, Lichtenhan JD (1998) Viscoelastic and morphological behavior of hybrid styryl-based polyhedral oligomeric silsesquioxane (POSS) copolymers. J Polym Sci Part B 36(11):1857–1872

    Article  Google Scholar 

  34. Ramzi BH, Sami B, Marie-Christine BS, Makki A, Mohamed NB (2008) Adsorption of silane onto cellulose fibers. II. The effect of pH on silane hydrolysis, condensation, and adsorption behavior. J Appl Polym Sci 108:1958–1968

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China (Grant Nos. 51003020, 91016015, 51102084), the postdoctoral initial funding of Heilongjiang Province, and Heilongjiang Province ordinary college youth academic backbone support plan(1252G054).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huifang Xu or Yudong Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Liu, L., Zhang, H. et al. Thermally induced structural evolution of methylsilicone xerogel monoliths reinforced by titania nanoparticles. J Mater Sci 49, 5757–5765 (2014). https://doi.org/10.1007/s10853-014-8295-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8295-z

Keywords

Navigation