Skip to main content

Advertisement

Log in

Processing and sintering of yttrium-doped tungsten oxide nanopowders to tungsten-based composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Innovative chemical methods are capable of fabricating nanoscale tungsten oxide compounds doped with various rare-earth elements with high purity and homogeneity, which can be processed under hydrogen into nanostructured oxide-dispersed tungsten composite powders having several potential applications. However, hydrogen reduction of doped tungsten oxide compounds is rather complex, affecting the morphology and composition of the final powder. In this study, we have investigated the reduction of tungstic acid in the presence of Y and we provide the experimental evidence that Y2O3 can be separated from Y-doped tungstic acid via hydrogen reduction to produce Y2O3-W powders. The processed powders were further consolidated by spark plasma sintering at different temperatures and holding times at 75 MPa pressure and characterized. The optimized SPS conditions suggest sintering at 1400 °C for 3 min holding time to achieve higher density composites with an optimum finer grain size (3 µm) and a hardness value up to 420 H V. Major grain growth takes place at temperatures above 1300 °C during sintering. From the density values obtained, it is recommend to apply higher pressure before 900 °C to obtain maximum density. Oxides inclusions present in the matrix were identified as Y2O3·3WO3 and Y2O3·WO3 during high resolution microscopic investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lassner E, Schubert W-D (1999) Tungsten: properties, chemistry, technology of the element, alloys, and chemical compounds, 1st edn. Kluwer Academic, New York

    Book  Google Scholar 

  2. Kitsunai Y, Kurishita H, Kayano H, Hiraoka Y, Igarashi T, Takida T (1999) Microstructure and impact properties of ultra-fine grained tungsten alloys dispersed with TiC. J Nucl Mater 271–272:423–428

    Article  Google Scholar 

  3. Faleschini M, Kreuzer H, Kiener D, Pippan R (2007) Fracture toughness investigations of tungsten alloys and SPD tungsten alloys. J Nucl Mater 367–370:800–805

    Article  Google Scholar 

  4. Zhang Y, Ganeev AV, Wang JT, Liu JQ, Alexandrov IV (2009) Observations on the ductile-to-brittle transition in ultrafine-grained tungsten of commercial purity. Mater Sci Eng A 503:37–40

    Article  Google Scholar 

  5. Kurishita H, Matsuso S, Arakawa H, Sakamoto T, Kobayashi S, Nakai K, Takida T, Kato M, Kawai M, Yoshida N (2010) Development of re-crystallized W–1.1%TiC with enhanced room-temperature ductility and radiation performance. J Nucl Mater 398:87–92

    Article  Google Scholar 

  6. Yoo SH, Sudarshan TS, Sethuram K, Subhash G, Dowding RJ (1999) Dynamic compression behavior of tungsten powders consolidated by plasma pressure compaction. Powder Metall 42(2):181–182

    Article  Google Scholar 

  7. Chen W, Kang Z, Ding B (2005) Nanostructured W-La2O3 electrode materials with high content La2O3 doping. Mater Lett 59:1138–1141

    Article  Google Scholar 

  8. Xi X, Nie Z, Wang W, Yang J, Hao S, Guo Y, Zuo T (2005) Study on preparation and emission properties of nano-composite W-La2O3 material. Appl Surf Sci 251:134–138

    Article  Google Scholar 

  9. Oda E, Ameyama K, Yamaguchi S (2006) Fabrication of nano grain tungsten compact by mechanical milling process and its high temperature properties. Mater Sci Forum 503–504:573–578

    Article  Google Scholar 

  10. Kurishita H, Matsuso S, Arakawa H, Hirai T, Linke J, Kawai M, Yoshida N (2009) Development of nanostructured W and Mo materials. Adv Mater Res 59:18–30

    Article  Google Scholar 

  11. Norajitra P, Boccaccini LV, Diegele E et al (2004) Development of a helium-cooled divertor concept: design-related requirements on materials and fabrication technology. J Nucl Mater 329–333:1594–1598

    Article  Google Scholar 

  12. Baluc N (2006) Materials for fusion power reactors. Plasma Phys Controlled Fusion 48:B165–B177

    Article  Google Scholar 

  13. Cottrell GA (2006) A survey of plasma facing materials for fusion power plants. Mater Sci Technol 22:869–880

    Article  Google Scholar 

  14. Norajitra P, Boccaccini LV, Gervash A et al (2007) Development of a helium-cooled divertor: material choice and technological studies. J Nucl Mater 367–370:1416–1421

    Article  Google Scholar 

  15. Wurster S, Pippan R (2009) Nanostructured metals under irradiation. Scr Mater 60:1083–1087

    Article  Google Scholar 

  16. Nita N, Schaeublin R, Victoria M (2004) Impact of irradiation on the microstructure of nanocrystalline materials. J Nucl Mater 329–333:953–957

    Article  Google Scholar 

  17. Chimi Y, Iwase A, Ishikawa N, Kobiyama M, Inami T, Okuda S (2001) Accumulation and recovery of defects in ion-irradiated nanocrystalline gold. J Nucl Mater 297:355–357

    Article  Google Scholar 

  18. Rose M, Balogh AG, Hahn H (1997) Instability of irradiation induced defects in nanostructured materials. Nucl Instrum Methods Phys Res B 127–128:119–122

    Article  Google Scholar 

  19. Shen TD, Feng S, Tang M, Valdez JA, Wang Y, Sickafus KE (2007) Enhanced radiation tolerance in nanocrystalline MgGa2O4. Appl Phys Lett 90(26):263115

    Article  Google Scholar 

  20. Radiguet B, Etienne A, Pareige P, Sauvage X, Valiev R (2008) Irradiation behavior of nanostructured 316 austenitic stainless steel. J Mater Sci 43:7338–7343. doi:10.1007/s10853-008-2875-8

    Article  Google Scholar 

  21. Avettand-Fenoel MN, Taillard R, Dhers J, Foct J (2003) Effect of ball milling parameters on the microstructure of W-Y powders and sintered samples. Int J Refract Met Hard Mater 21:205–213

    Article  Google Scholar 

  22. Malewar R, Kumar KS, Murty BS, Sarma B, Pabi SK (2007) On sinterability of nanostructured W produced by high-energy ball milling. J Mater Res 22(5):1200–1206

    Article  Google Scholar 

  23. Sarkar R, Ghosal P, Premkumar M, Singh AK, Muraleedharan K, Chakraborti A, Bagchi TP, Sarma B (2008) Characterisation and sintering studies of mechanically milled nano tungsten powder. Powder Metall 51(2):166–170

    Article  Google Scholar 

  24. Veleva L, Oksiuta Z, Vogt U, Baluc N (2009) Sintering and characterization of W-Y and W–Y2O3 materials. Fusion Eng Des 84:1920–1924

    Article  Google Scholar 

  25. Zhang Y, Fang Z, Muhammed M, Rao KV, Skumryev V, Medelius H, Costa JL (1989) The synthesis of superconducting bismuth compounds via oxalate coprecipitation. Phys C 157:108–114

    Article  Google Scholar 

  26. Wang L, Zhang Y, Muhammed M (1995) Synthesis of nanophase oxalate precursors of YBaCuO superconductor by coprecipitation in microemulsions. J Mater Chem 5(2):309–314

    Article  Google Scholar 

  27. Xi X, Nie Z, Yang J, Fu X, Wang W, Zuo T (2005) Preparation and characterization of Ce–W composite nanopowder. Mater Sci Eng A 394:360–365

    Article  Google Scholar 

  28. Ryu T, Hwang KS, Choi YJ, Sohn HY (2009) The sintering behavior of nanosized tungsten powder prepared by a plasma process. Int J Refract Met Hard Mater 27:701–704

    Article  Google Scholar 

  29. Wahlberg S, Grenthe I, Muhammed M (1997) Nanostructured hard material composites by molecular engineering 1. Synthesis from soluble tungstate salts. Nanostruct Mater 9:105–108

    Article  Google Scholar 

  30. Muhammed M, Wahlberg S, Grenthe I (1995) Method of preparing powders for hard materials. Swedish Pat. SE9402081

  31. Zhang Z, Wahlberg S, Wang M, Muhammed M (1999) Processing of nanostructured WC-Co powders from precursor obtained by co-precipitation. Nanostruct Mater 12:163–166

    Article  Google Scholar 

  32. Zhang Z, Zhang Y, Muhammed M (2002) The reduction of cobalt doped ammonium paratungstate to nanostructured W-Co powder. Int J Refract Met Hard Mater 20:227–233

    Article  Google Scholar 

  33. Zhang Z, Muhammed M (2003) Thermochemical decomposition of cobalt doped ammonium paratungstate precursor. Thermochim Acta 400:235–245

    Article  Google Scholar 

  34. Yar MA, Wahlberg S, Bergqvist H, Salem HG, Johnsson M, Muhammed M (2011) Chemically produced nanostructured ODS–lanthanum oxide–tungsten composites sintered by spark plasma. J Nucl Mater 408:129–135

    Article  Google Scholar 

  35. Yar MA, Wahlberg S, Bergqvist H, Salem HG, Johnsson M, Muhammed M (2011) Spark plasma sintering of tungsten–yttrium oxide composites from chemically synthesized nanopowders and microstructural characterization. J Nucl Mater 412:227–232

    Article  Google Scholar 

  36. Wahlberg S, Yar MA, Abuelnaga MO, Salem HG, Johnsson M, Muhammed M (2012) Fabrication of nanostructured W-Y2O3 materials by chemical methods. J Mater Chem 22:12622–12628

    Article  Google Scholar 

  37. Borchardt HJ (1963) Yttrium-tungsten oxides. Inorg Chem 2(1):170–173

    Article  Google Scholar 

  38. Tan J, Zhou Z, Zhong M, Zhu X, Lei M, Liu W, Ge C (2011) Annealing behaviour and transient high-heat loading performance of different grade finegrained tungsten. Phys Scr 145:014055

    Article  Google Scholar 

  39. Fang ZZ, Wang H (2008) Densification and grain growth during sintering of nanosized particles. Int Mater Rev 53(6):326–352

    Article  Google Scholar 

  40. Viswanathan V, Laha T, Balani K, Agarwal A, Seal S (2006) Challenges and advances in nanocomposite processing techniques. Mater Sci Eng R 54:121–285

    Article  Google Scholar 

  41. Zhou Z, Pintsuk G, Jochen Linke, Hirai T, Rödig M, Ma Y, Ge C (2010) Transient high heat load tests on pure ultra-fine grained tungsten fabricated by resistance sintering under ultra-high pressure. Fusion Eng Des 85:115–121

    Article  Google Scholar 

  42. Ma Y, Zhou Z, Tan J, Li M (2011) Fabrication of ultra-fine grain tungsten by combining spark plasma sintering with resistance sintering under ultra high pressure. Rare Met Mater Eng 40(1):0004–0008

    Article  Google Scholar 

  43. Xie ZM, Liu R, Fang QF, Zhou Y, Wang XP, Liu CS (2014) Spark plasma sintering and mechanical properties of zirconium micro-alloyed tungsten. J Nucl Mater 444:175–180

    Article  Google Scholar 

  44. Mcwilliams B, Zavaliangos A, Cho KC, Dowding RJ (2006) The modelling of electric-current-assisted sintering to produce bulk nanocrystalline tungsten. J Miner Met Mater Soc 58(4):67–71

    Article  Google Scholar 

  45. Maizza G, Grasso S, Sakka Y, Noda T, Ohashi O (2007) Relation between microstructure, properties and spark plasma sintering (SPS) parameters of pure ultrafine WC powder. Sci Technol Adv Mater 8:644–654

    Article  Google Scholar 

  46. Haubner R, Schubert WD, Hellmer H, Lassner E, Lux B (1983) Mechanism of technical reduction of tungsten: part 1. Literature review. J Refract Met Hard Mater 2:108–115

    Google Scholar 

  47. Haubner R, Schubert WD, Hellmer H, Lassner E, Lux B (1983) Mechanism of technical reduction of tungsten: part 2. Hydrogen reduction of tungsten blue oxide to tungsten powder. J Refract Met Hard Mater 2:156–163

    Google Scholar 

  48. Schubert WD (1990) Kinetics of hydrogen reduction of tungsten oxides. J Refract Met Hard Mater 4:178–191

    Google Scholar 

  49. Millner T (1974) Story of beryllium containing additives in large crystalline metallic tungsten. Acta Chim 82(1):1–9

    Google Scholar 

  50. Huang J, Xu J, Li H, Luo H, Yu X, Li Y (2011) Determining the structure of tetragonal Y2WO6 and the site occupation of Eu3+ dopant. J Solid State Chem 184:843–847

    Article  Google Scholar 

  51. Wang J, Zhang ZJ, Zhao JT, Chen HH, Yang XX, Tao Y, Huang Y (2010) Luminescent metastable Y2WO6:Ln3+ (Ln = Eu, Er, Sm, and Dy) microspheres with controllable morphology via self-assembly. J Mater Chem 20:10894–10900

    Article  Google Scholar 

Download references

Acknowledgements

Authors of the work are thankful to Prof. John Ågren and Dr. Peter Hedström at Department of Materials Science and Engineering-KTH, Oskar Karlsson at Swerea-Kimab AB, for EBSD and hardness measurements. Dr. M. Waldenström at Sandvik AB is acknowledged for providing APT. M. A. Yar is grateful to Higher Education Commission (HEC), Government of Pakistan for financial support during his PhD studies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mazher Ahmed Yar or Mamoun Muhammed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yar, M.A., Wahlberg, S., Abuelnaga, M.O. et al. Processing and sintering of yttrium-doped tungsten oxide nanopowders to tungsten-based composites. J Mater Sci 49, 5703–5713 (2014). https://doi.org/10.1007/s10853-014-8289-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8289-x

Keywords

Navigation