Skip to main content
Log in

Electrochemical properties of V2O5/carbon composite electrodes in aqueous solutions

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The reaction mechanism of V2O5 xerogel and the electrode properties of V2O5/carbon composites in an aqueous electrolyte solution were examined to obtain high-performance electrodes for rechargeable proton batteries. Based on the results of the chemical analysis of the electrode, proton intercalation is suggested to be the dominant reaction mechanism. By using the relationship between the capacity and current density of a thin-film electrode consisting of V2O5 xerogel, the diffusion coefficient in the V2O5 xerogel was determined to be 8 ± 1 × 10−11 cm2 s−1. The V2O5/carbon composite electrode was prepared by drying a homogeneous dispersion of carbon particles in the V2O5 sol. The composite electrodes showed a large capacity of 460 mAh g−1 at a current density of 1 A g−1 and maintained a relatively large capacity of 160 mAh g−1 at 100 A g−1. These properties were attributed to the homogeneous microstructure of the V2O5/carbon composites. The V2O5/carbon composite electrodes were thus revealed as high-performance electrodes with large capacities and excellent high-rate capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang G, Fu L, Zhao N, Yang L, Wu Y, Wu H (2007) An aqueous rechargeable lithium battery with good cycling performance. Angew Chem Int Ed 46:295–297

    Article  Google Scholar 

  2. Tang W, Liu LL, Tian S, Li L, Yue YB, Wu YP, Guan SY, Zhu K (2010) Nano-LiCoO2 as cathode material of large capacity and high rate capability for aqueous rechargeable lithium batteries. Electrochem Commun 12:1524–1526

    Article  Google Scholar 

  3. Tang W, Tian S, Liu LL, Li L, Zhang HP, Yue YB, Bai Y, Wu YP, Zhu K (2011) Nanochain LiMn2O4 as ultra-fast cathode material for aqueous rechargeable lithium batteries. Electrochem Commun 13:205–208

    Article  Google Scholar 

  4. Falk SU, Salkind AJ (1969) Alkaline storage batteries. Wiley, New York

    Google Scholar 

  5. Pickett DF, Maloy JT (1978) Microelectrode studies of electrochemically coprecipitated cobalt hydroxide in nickel hydroxide electrodes. J Electrochem Soc 125:1026–1032

    Article  Google Scholar 

  6. Watanabe K, Kikuoka T, Kumagai N (1995) Physical and electrochemical characteristics of nickel hydroxide as a positive material for rechargeable alkaline batteries. J Appl Electrochem 25:219–226

    Article  Google Scholar 

  7. Mondoloni C, Laborde M, Rioux J, Andoni E, Lévy-Clément C (1992) Rechargeable alkaline manganese dioxide batteries. 1. In situ X-ray diffraction investigation of the H+/γ-MnO2 (EMD-type) insertion system. J Electrochem Soc 139:954–959

    Article  Google Scholar 

  8. Amarilla JM, Tedjar F, Poinsignon C (1994) Influence of KOH concentration on the γ-MnO2 redox mechanism. Electrochim Acta 39:2321–2331

    Article  Google Scholar 

  9. Jang H, Suzuki S, Miyayama M (2012) Self-reassembled MnO2 nanosheets for electrochemical capacitors in neutral aqueous solution. J Electrochem Soc 159:A1425–A1430

    Article  Google Scholar 

  10. Yano M, Suzuki S, Miyayama M, Ohgaki M (2013) Electrode properties and microstructures of MnO2 nanosheet thin films as cathodes for electrochemical capacitors. Solid State Ionics 233:32–37

    Article  Google Scholar 

  11. Yano M, Suzuki S, Miyayama M, Ohgaki M (2013) Effects of microstructure on electrode properties of nanosheet-derived H x (Ni1/3Co1/3Mn1/3)O2 for electrochemical capacitors. Nanomaterials 3:204–220

    Article  Google Scholar 

  12. Yano M, Suzuki S, Miyayama M, Ohgaki M (2013) Electrochemical properties of layer-structured H x (Ni1/3Co1/3Mn1/3)O2 for electrochemical capacitors in alkaline aqueous solutions. J Asian Ceram Soc 1:71–76

    Article  Google Scholar 

  13. Dong X, Shen W, Gu J, Xiong L, Zhu Y, Li H, Shi J (2006) MnO2-embedded-in-mesoporous-carbon-wall structure for use as electrochemical capacitors. J Phys Chem B 110:6015–6019

    Article  Google Scholar 

  14. Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin LC (2011) Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon 49:2917–2925

    Article  Google Scholar 

  15. Hou Y, Cheng Y, Hobson T, Liu J (2010) Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Lett 10:2727–2733

    Article  Google Scholar 

  16. Lu X, Zhai T, Zhang X, Shen Y, Yuan L, Hu B, Gong L, Chen J, Gao Y, Zhou J, Tong Y, Wang ZL (2012) WO3−x@Au@MnO2 core–shell nanowires on carbon fabric for high-performance flexible supercapacitors. Adv Mater 24:938–944

    Article  Google Scholar 

  17. Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946

    Article  Google Scholar 

  18. Zhu X, Zhu Y, Murali S, Stoller MD, Ruoff RS (2011) Nanostructured reduced grapheme oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5:3333–3338

    Article  Google Scholar 

  19. Ugaji M, Hibino M, Kudo T (1995) Evaluation of a new type of vanadium oxide from peroxo-polyvanadate as a cathode material for rechargeable lithium batteries. J Electrochem Soc 142:3664–3668

    Article  Google Scholar 

  20. Giorgetti M, Passerini S, Smyrl WH, Mukerjee S, Yang XQ, McBreen J (1999) In situ X-ray absorption spectroscopy characterization of V2O5 xerogel cathodes upon lithium intercalation. J Electrochem Soc 146:2387–2392

    Article  Google Scholar 

  21. Livage J (1991) Vanadium pentoxide gels. Chem Mater 3:578–593

    Article  Google Scholar 

  22. Parent MJ, Passerini S, Owens BB, Smyrl WH (1999) Composites of V2O5 aerogel and nickel fiber as high rate intercalation electrodes. J Electrochem Soc 146:1346–1350

    Article  Google Scholar 

  23. Passerini S, Ressler JJ, Le DB, Owens BB, Smyrl WH (1999) High rate electrodes of V2O5 aerogel. Electrochim Acta 44:2209–2217

    Article  Google Scholar 

  24. Kudo T, Ikeda Y, Watanabe T, Hibino M, Miyayama M, Abe H, Kajita K (2002) Amorphous V2O5/carbon composites as electrochemical supercapacitor electrodes. Solid State Ionics 152–153:833–841

    Article  Google Scholar 

  25. Yamada H, Tagawa K, Komatsu M, Moriguchi I, Kudo T (2007) High power battery electrodes using nanoporous V2O5/carbon composites. J Phys Chem C 111:8397–8402

    Article  Google Scholar 

  26. Stojković I, Cvjetićanin N, Pašti I, Mitrić M, Mentus S (2009) Electrochemical behavior of V2O5 xerogel in aqueous LiNO3 solution. Electrochem Commun 11:1512–1514

    Article  Google Scholar 

  27. Stojković I, Cvjetićanin N, Marković S, Mitrić M, Mentus S (2010) Electrochemical behavior of V2O5 xerogel and V2O5 xerogel/C composite in an aqueous LiNO3 and Mg(NO3)2 solutions. Acta Phys Pol A 117:837–840

    Google Scholar 

  28. Hibino M, Ugaji M, Kishimoto A, Kudo T (1995) Preparation and lithium intercalation of a new vanadium oxide with a two-dimensional structure. Solid State Ionics 79:239–244

    Article  Google Scholar 

  29. Imamura D, Miyayama M, Hibino M, Kudo T (2003) Mg intercalation properties into V2O5 gel/carbon composites under high-rate conduction. J Electrochem Soc 150:A753–A758

    Article  Google Scholar 

  30. Suzuki S, Miyayama M (2013) Electrochemical intercalation of lithium into thin film of stacked tetratitanate nanosheets fabricated by electrophoretic deposition. J Electrochem Soc 160:A293–A296

    Article  Google Scholar 

  31. Wang X, Sebastian PJ, Millan AC, Parkhutik PV, Gamboa SA (2005) Electrochemical study of nanostructured multiphase nickel hydroxide. J New Mater Electrochem Syst 8:101–108

    Google Scholar 

  32. Baddour R, Pereira-Ramos JP, Messina R, Perichon J (1991) A thermodynamic, structural and kinetic study of the electrochemical lithium intercalation into the xerogel V2O5·1.6H2O in a propylene carbonate solution. J Electroanal Chem 314:81–101

    Article  Google Scholar 

  33. Hu CC, Chen WC, Chang KH (2004) How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors. J Electrochem Soc 151:A281–A290

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinya Suzuki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamei, K., Suzuki, S. & Miyayama, M. Electrochemical properties of V2O5/carbon composite electrodes in aqueous solutions. J Mater Sci 49, 5579–5585 (2014). https://doi.org/10.1007/s10853-014-8267-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8267-3

Keywords

Navigation