Skip to main content
Log in

Electronic band structure and optoelectronic properties of SrCu2X2 (X = As, Sb): DFT calculation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

All-electron-full potential linear-augmented plane wave method with Engel Vosko approximation was used for calculating the electronic structure, Fermi surface, and optical properties of SrCu2X2 (X = As, Sb). The calculated band structure and Fermi surface show that the metallic behavior of SrCu2X2 increases as one move from As to Sb. The calculated partial density of states shows that As-s/p/d, Cu-s/p, and Sr-s/p/d states are forming the Fermi surface for SrCu2As2, whereas Sb-s/p/d, Cu-s/p, and Sr-s/p/d states are forming the Fermi surface for SrCu2Sb2. The calculated densities of states at Fermi level and electronic specific heat are 14.2 (42.57) states/Ryd-cell and 2.60 (7.37) mJ/mol K2 for SrCu2As2 (SrCu2Sb2). The complex optical dielectric function’s dispersion and the related optical properties such as refractive indices, extension coefficient, absorption coefficient, reflectivity, energy loss function, and optical conductivity were calculated and discussed in detail. The optical properties show a considerable anisotropy between the two components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yan YJ, Cheng P, Ying JJ, Luo XG, Chen F, Zou HY, Wang AF, Ye GJ, Xiang ZJ, Ma JQ, Chen XH (2013) Structural, magnetic, and electronic transport properties of hole-doped SrFe2−xCuxAs2 single crystals. Phys Rev B 87:075105-4

    Google Scholar 

  2. Villars P, Calvert LD (1991) Pearson’s handbook of crystallographic data for intermetallic phases, 2nd edn. American Society for Metals, Materials Park

    Google Scholar 

  3. Ban Z, Sikirica M (1965) The crystal structure of ternary silicides ThM2Si2(M=Cr, Mn, Fe Co, Ni and Cu). Acta Crystallogr 18:594–599

    Article  Google Scholar 

  4. Shein IR, Ivanovskii AL (2009) Electronic and structural properties of low-temperature superconductors and ternary pnictides ANi2Pn2 (A=Sr, Ba and Pn=P, As). Phys Rev B 79:054510-7

    Google Scholar 

  5. Mörsen E, Mosel BD, Müller-Warmuth W (1988) Mössbauer and magnetic susceptibility investigations of strontium, lanthanum and europium transition metal phosphides with ThCr2Si2 type structure. J Phys Chem Solids 49:785–795

    Article  Google Scholar 

  6. Ronning F, Kurita N, Bauer ED, Scott BL, Park T, Klimczuk T, Movshovich R, Thompson DJ (2008) The first order phase transition and superconductivity in BaNi2As2 single crystals. J Phys 20:342203–342207

    Google Scholar 

  7. Bauer ED, Ronning F, Scott BL, Thompson JD (2008) Superconductivity in SrNi2As2 single crystals. Phys Rev B 78:172504-3

    Google Scholar 

  8. Baran S, Bałanda L, Gondek Ł, Hoserd A, Nenkov K, Penca B, Szytuła A (2010) Nature of magnetic phase transitions in TbCu2X2 (X = Si, Ge) and HoCu2Si2 compounds. J Alloys Comp. 507:16–20

    Article  Google Scholar 

  9. Cabrera-Pasca GA, Carbonari AW, Saxena RN, Bosch-Santos B, Coaquira JAH, Filho JA (2012) Magnetic hyperfine field at highly diluted Ce impurities in the antiferromagnetic compound GdRh2Si2 studied by perturbed gamma–gamma angular correlation spectroscopy. J Alloys Comp 515:44–48

    Article  Google Scholar 

  10. Huhnt C, Michels G, Roepke M, Schlabitz W, Wurth A, Johrendt D, Mewis A (1997) First-order phase transitions in the ThCr2Si2-type phosphides ARh2P2 (A = Sr, Eu). Phys B 240:26–37

    Article  Google Scholar 

  11. Huhnt C, Schlabitz W, Wurth A, Mewis A, Reehuis M (1998) First- and second-order phase transitions in ternary europium phosphides with ThCr2Si2-type structure. Phys B 252:44–54

    Article  Google Scholar 

  12. Jesche A, Caroca-Canales N, Rosner H, Borrmann H, Ormeci A, Kasinathan D (2008) Strong coupling between magnetic and structural order parameters in SrFe2As2. Phys Rev B 78:180504-4

    Article  Google Scholar 

  13. Sefat AS, Singh DJ, Jin R, McGuire MA, Sales BC, Mandrus D (2009) Renormalized behavior and proximity of BaCo2As2 to a magnetic quantum critical point. Phys Rev B 79:024512-5

    Article  Google Scholar 

  14. Subedi A, Singh DJ (2008) Density functional study of BaNi2As2: electronic structure, phonons, and electron-phonon superconductivity. Phys Rev B 78:132511-4

    Google Scholar 

  15. Torikachvili MS, Bud’ko SL, Ni N, Canfield PC (2008) Pressure Induced Superconductivity in CaFe2As2. Phys Rev Lett 101:057006-4

    Article  Google Scholar 

  16. Alireza PL, Ko YTC, Gillett J, Petrone CM, Cole JM, Lonzarich GG, Sebastian SE (2009) Superconductivity up to 29 K in SrFe2As2 and BaFe2As2 at high pressures. J Phys 21:012208–012212

    Google Scholar 

  17. Rotter M, Tegel M, Johrendt D (2008) Superconductivity at 38 K in the iron arsenide (Ba1−xKx)Fe2As2. Phys Rev Lett 101:107006-4

    Article  Google Scholar 

  18. Sasmal K, Lv B, Lorenz B, Guloy A, Chen F, Xue Y, Chu CW (2008) Superconducting Fe-based compounds (A1−xSrx)Fe2As2 with A = K and Cs with transition temperatures up to 37 K. Phys Rev Lett 101:107007-4

    Article  Google Scholar 

  19. Jeevan HS, Hossain Z, Geibel C, Gegenwart P (2008) High-temperature superconductivity in Eu0.5K0.5Fe2As2. Phys Rev B 78:092406–092409

    Article  Google Scholar 

  20. Pfisterer M, Nagorsen G (1980) On the structure of ternary Arsenides. Z Naturforsch B 35B:703–704

    Google Scholar 

  21. Singh DJ (2009) Electronic structure of BaCu2As2 and SrCu2As2: sp-band metals. Phys Rev B 79:153102–153104

    Article  Google Scholar 

  22. Anand VK, Kanchana Perera P, Pandey A, Goetsch RJ, Kreyssig A, Johnston DC (2012) Crystal growth and physical properties of SrCu2As2, SrCu2Sb2, and BaCu2Sb2. Phys Rev B 85:214523–214549

    Article  Google Scholar 

  23. Lv ZL, Cheng Y, Chen XR, Ji GF (2013) Electronic, elastic and thermal properties of SrCu2As2 via first principles calculation. J Alloys Compd 570:156–161

    Article  Google Scholar 

  24. Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Harsnip PJ, Clark SJ, Panye MC (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Condens Matter 14:2717–2744

    Article  Google Scholar 

  25. Wu Z, Cohen RE (2006) More accurate generalized gradient approximation for solids. Phys Rev B 73:235116-6

    Google Scholar 

  26. Gao S (2003) Linear-scaling parallelization of the WIEN package with MPI. Comput Phys Commun 153:190–198

    Article  Google Scholar 

  27. Schwarz K (2003) DFT calculations of solids with LAPW and WIEN2k. J Solid State Chem 176:319–328

    Article  Google Scholar 

  28. Grotendorst J, Blügel S, Marx D (2006) Computational nanoscience. NIC Series, Jülich, 31:85–129, ISBN 3-00-017350-1

  29. Blaha P, Schwarz K, Madson GKH, Kvasnicka D, Luitz J (2001) WIEN2K, techn. Universitat, Vienna, ISBN 3-9501031-1-1-2

  30. Engel E, Vosko SH (1993) Exact exchange-only potentials and the virial relation as microscopic criteria for generalized gradient approximations. Phys Rev B 47:13164–13174

    Article  Google Scholar 

  31. Charifi Z, Baaziz H, Reshak AH (2007) Ab-initio investigation of structural, electronic and optical properties for three phases of ZnO compound. Phys Stat Sol B 244:3154–3167

    Article  Google Scholar 

  32. Reshak AH, Khan SA (2013) Electronic structure and optical properties of In2X2O7 (X = Si, Ge, Sn) from direct to indirect gap: an ab initio study. Comput Mater Sci 78:91–97

    Article  Google Scholar 

  33. Reshak AH, Kamarudin H (2011) Theoretical investigation for Li2CuSb as multifunctional materials: electrode for high capacity rechargeable batteries and novel materials for second harmonic generation. J Alloys Compds 509:7861–7869

    Article  Google Scholar 

  34. Reshak AH, Khan SA (2014) Thermoelectric properties, electronic structure and optoelectronic properties of anisotropic Ba2Tl2CuO6 single crystal from DFT approach. J Magn Magn Mater 354:216–221

    Google Scholar 

  35. Reshak AH, Azam S (2013) First-principles study of the electronic structure, charge density, Fermi surface and optical properties of zintl phases compounds Sr2ZnA2 (A = P, As and Sb). J Magn Magn Mater 345:294–303

    Google Scholar 

  36. Reshak AH, Azam S (2014) Electronic structure, Fermi surface and optical properties of metallic compound Be8(B48)B2. J Magn Magn Mater 351:98–103

    Google Scholar 

  37. Delin A, Ravindran P, Eriksson O, Wills JM (1998) Full-potential optical calculations of lead chalcogenides. Int J Quant Chem 69:349–358

    Article  Google Scholar 

  38. Wooten F (1972) Optical properties of solids. Academic press, New York

    Google Scholar 

  39. Reshak AH, Azam S (2013) Electronic band structure and specific features of Sm2NiMnO6 compound: DFT calculation. J Magn Magn Mater 342:80–86

    Google Scholar 

  40. Reshak AH, Charifi Z, Baaziz H (2010) Ab-initio calculation of structural, electronic, and optical characterizations of the intermetallic trialuminides ScAl3 compound. J Solid State Chem 183:1290–1296

    Article  Google Scholar 

  41. Tributsch H (1972) Solar energy-assisted electrochemical splitting of water. Z Naturforsch 32A:972–985

    Google Scholar 

  42. Marton L (1956) Experiments on low-energy electron scattering and energy losses. Rev Mod Phys 28:172–184

    Article  Google Scholar 

Download references

Acknowledgements

The result was developed within the CENTEM project, reg. no. CZ.1.05/2.1.00/03.0088, co-funded by the ERDF as part of the Ministry of Education, Youth and Sports OP RDI programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saleem Ayaz Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S.A., Reshak, A.H. & Alahmed, Z.A. Electronic band structure and optoelectronic properties of SrCu2X2 (X = As, Sb): DFT calculation. J Mater Sci 49, 5208–5217 (2014). https://doi.org/10.1007/s10853-014-8230-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8230-3

Keywords

Navigation