Skip to main content

La3+-induced (micro)structural changes and origin of the relaxor-like phase transition in ferroelectric lead barium niobate electroceramics

Abstract

Lead barium niobate (Pb1−x Ba x Nb2O6, PBN) ferroelectric materials have been and are the subject of numerous studies in literature due to their potential for wide-ranging applications in the electronic industry. In this work, La3+-doped Pb0.56Ba0.44Nb2O6 (PBN44) electroceramics were prepared and investigated in terms of X-ray diffraction, scanning electron microscopy, thermal spectra of dielectric permittivity, Curie–Weiss law, and hysteresis loop characteristics. It was noted that La3+ doping favors the formation of orthorhombic mm2 phase in PBN44, which originally shows only the tetragonal 4mm symmetry-related phase. In particular, the PBN44 material with 1 wt% La2O3 displays (micro)structural characteristics and dielectric properties similar to those from PBN compositions lying within their morphotropic phase boundary region. Our results also show that La3+ is able to promote a change of the ferroelectric to paraelectric phase transition appearance of PBN44 from pseudo-normal to really diffuse. However, conversion to a diffuse plus relaxor transition behavior reveals directly linked to incommensurate superstructures present and dielectrically-active in PBN materials toward low temperatures, with an intrinsically frequency-dispersive dielectric response. This statement is also supported by observation of hysteresis loops showing a transformation trend to pseudo-slim-like, even in the normal-like ferroelectrics, when moving into the temperature region of incommensuration manifestation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic, London

    Google Scholar 

  2. 2.

    Uchino K (2000) Ferroelectrics Devices, 2nd edn. Taylor and Francis Group, Routledge

    Google Scholar 

  3. 3.

    Goodman G (1953) Ferroelectric properties of lead metaniobate. J Am Ceram Soc 36:368–372

    Article  Google Scholar 

  4. 4.

    Francombe MH (1960) The relation between structure and ferroelectricity in lead barium and barium strontium niobates. Acta Cryst 13:131–140

    Article  Google Scholar 

  5. 5.

    Guo R, Bhalla AS, Randall CA, Chang ZP, Cross LE (1990) Polarization mechanisms of morphotropic phase-boundary lead barium niobate (PBN) compositions. J Appl Phys 67:1453–1460

    Article  Google Scholar 

  6. 6.

    Cross LE (1987) Relaxor ferroelectrics. Ferroelectrics 76:241–267

    Article  Google Scholar 

  7. 7.

    Singh G, Tiwari VS, Wadhawan VK (2001) Crossover from relaxor to normal ferroelectric behavior in (1−x)Pb(Mg1/3Nb2/3)O3−xPbZrO3 ceramic near x = 0.5. Solid State Commun 118:407–411

    Article  Google Scholar 

  8. 8.

    Bokov AA, Ye ZG (2006) Recent progress in relaxor ferroelectrics with perovskite structure. J Mater Sci 41:31–52. doi:10.1007/s10853-005-5915-7

    Article  Google Scholar 

  9. 9.

    Rivera I, Kumar A, Ortega N, Katiyar RS, Lushnikov S (2009) Divide line between relaxor; diffused ferroelectric; ferroelectric and dielectric. Solid State Commun 149:172–176

    Article  Google Scholar 

  10. 10.

    Venet M, Vendramini A, Garcia D, Eiras JA, Guerrero F (2006) Tailoring of the lead metaniobate ceramic processing. J Am Ceram Soc 89:2399–2404

    Article  Google Scholar 

  11. 11.

    R. Neurgaonkar R, Oliver JR, Nelson JG, Cross LE (1991) Piezoelectric and ferroelectric properties of La-modified and unmodified tungsten bronze Pb0.6Ba0.4Nb2O6 dense ceramics. Mat. Res. Bull 26:771–777

    Article  Google Scholar 

  12. 12.

    Venet M, Zabotto FL, Eiras JA, Garcia D (2009) Improvement of the phase diagram for the pseudobinary PbNb2O6–BaNb2O6 system. J Appl Phys 105:124106

    Article  Google Scholar 

  13. 13.

    Venet M, A. Eiras J, Garcia D (2009) Anisotropic properties in textured lead barium niobate compositions around the morphotropic phase boundary. Solid State Ion 180:320–325

    Article  Google Scholar 

  14. 14.

    Dai X, Viehland D (1994) Effects of lanthanum modification on the antiferroelectric ferroelectric stability of high zirconium content lead zirconate titanate. J Appl Phys 76:3701–3709

    Article  Google Scholar 

  15. 15.

    Gupta SM, Li J-F, Viehland D (1998) Coexistence of relaxor and normal ferroelectric phases in morphotropic phase boundary compositions of lanthanum-modified lead zirconate titanate. J Am Ceram Soc 81:557–564

    Article  Google Scholar 

  16. 16.

    Barranco AP, Guerra JDS, Zaldívar OG, Piñar FC, Araújo EB, Hall DA, Mendoza ME, Eiras JÁ (2008) Effects of lanthanum modification on dielectric properties of Pb(Zr0.90, Ti0.10)O3 ceramics: enhanced antiferroelectric stability. J Mater Sci 43:6087–6093. doi:10.1007/s10853-008-2951-0

    Article  Google Scholar 

  17. 17.

    Tang B, Fan H, Ke S, Liu L (2007) Microstructure evolutions and electrical properties of Pb1−x La x (Zr0.56Ti0.44)1−x /4O3 ceramics. Mater Sci Eng B 138:205–209

    Article  Google Scholar 

  18. 18.

    Venet M, M’Peko JC, Zabotto FL, Guerrero F, Garcia D, Eiras JA (2009) Dynamics of normal to diffuse and relaxor phase transition in lead metaniobate-based ferroelectric ceramics. Appl Phys Lett 94:172901

    Article  Google Scholar 

  19. 19.

    Randall CA, Guo R, Bhalla AS, Cross LE (1991) Microstructure-property relations in tungsten bronze lead barium niobate Pb1−xBaxNb2O6. J Mater Res 6:1720–1728

    Article  Google Scholar 

  20. 20.

    Xu Y, Li Z, Li W, Wang H, Chen H (1989) Phase-transition of some ferroelectric niobate crystals with tungsten-bronze structure at low-temperatures. Phys Rev B 40:11902–11908

    Article  Google Scholar 

  21. 21.

    Guerra JDS, Venet M, Garcia D, Eiras JA (2007) Dielectric properties of PbNb2O6 ferroelectric ceramics at cryogenic temperatures. Appl Phys Lett 91:062915

    Article  Google Scholar 

  22. 22.

    Bursill LA, Lin PJ (1986) Chaotic states observed in strontium barium niobate. Philos Mag B 54:157–170

    Article  Google Scholar 

  23. 23.

    Lin PJ, Bursill LA (1987) Superlattice structure of ferroelectric barium sodium niobate (BNN). Acta Cryst B 43:504–512

    Article  Google Scholar 

  24. 24.

    Lee H-Y, Freer R (1998) High-order incommensurate modulations and incommensurate superstructures in transparent Sr0.6Ba0.4Nb2O6 (SBN40) ceramics. J Appl Cryst 31:683–691

    Article  Google Scholar 

  25. 25.

    Levin I, Stennett MC, Miles GC, Woodward DI, West AR, Reaney IM (2006) Coupling between octahedral tilting and ferroelectric order in tetragonal tungsten bronze-structured dielectrics. Appl Phys Lett 89:122908

    Article  Google Scholar 

  26. 26.

    Viehland D, Li JF, Jang SJ, Cross LE, Wuttig M (1991) Dipolar-glass model for lead magnesium niobate. Phys Rev B 43:8316–8320

    Article  Google Scholar 

  27. 27.

    Dai X, Xu Z, Viehland D (1996) Normal to relaxor ferroelectric transformations in lanthanum-modified tetragonal-structured lead zirconate titanate ceramics. J Appl Phys 79:1021–1026

    Article  Google Scholar 

  28. 28.

    Viehland D, Jang SJ, Cross LE (1990) Freezing of the polarization fluctuations in lead magnesium niobate relaxors. J Appl Phys 68:2916–2921

    Article  Google Scholar 

  29. 29.

    Randall CA, Balha AS, Shrout TR, Cross LE (1990) Classification and consequences of complex lead perovskite ferroelectrics with regard to b-site cation order. J Mater Res 5:829–834

    Article  Google Scholar 

  30. 30.

    Dai X, Xu Z, Viehland D (1994) The spontaneous relaxor-to-normal ferroelectric transformation in La-modified lead zirconate titanate. Philos Mag B 70:33–48

    Article  Google Scholar 

  31. 31.

    Li JF, Dai X, Chow A, Viehland D (1995) Polarization switching mechanisms and electromechanical properties of La-modified lead zirconate titanate ceramics. J Mater Res 10:926–938

    Article  Google Scholar 

  32. 32.

    Thomas NW (1983) A new framework for understanding relaxor ferroelectrics. J Phys Chem Solids 51:1419–1431

    Article  Google Scholar 

  33. 33.

    Knudsen J, Woodward DI, Reaney IM (2002) Domain variance and superstructure across the antiferroelectric/ferroelectric phase boundary in Pb1−1.5x La x (Zr0.9Ti0.1)O3. J Mater Res 18:262–271

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by FAPESP and CNPq, two Brazilian research-funding agencies. Support from MAT2010-21088-C03-02 research project of the Spanish Government is also grateful. The authors gratefully acknowledge technical assistance from Francisco J. Picon. J. E. García wishes to thank Erasmus Mundus External Cooperation Window EU-Brazil Startup project and JPI-2012 Santander-Universidades program for their financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michel Venet.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Venet, M., Zabotto, F.L., Garcia, J.E. et al. La3+-induced (micro)structural changes and origin of the relaxor-like phase transition in ferroelectric lead barium niobate electroceramics. J Mater Sci 49, 4825–4832 (2014). https://doi.org/10.1007/s10853-014-8182-7

Download citation

Keywords

  • Hysteresis Loop
  • Dielectric Permittivity
  • La2O3
  • Morphotropic Phase Boundary
  • Hysteresis Loop Measurement