Advertisement

Journal of Materials Science

, Volume 49, Issue 13, pp 4481–4489 | Cite as

Material surface engineering for multiplex cell culture in microwell

  • Ophélie I. Berthuy
  • Céline A. Mandon
  • Benjamin P. Corgier
  • Guillaume G. Octobre
  • Giacomo Ceccone
  • Valentina Spampinato
  • Loïc J. Blum
  • Christophe A. MarquetteEmail author
Article

Abstract

In this study, we develop a new concept for multiplexed and localized cell co-culture. This cell chip consists of a polystyrene spin-coated solid support bearing gold-bottomed microwells. The cell-chip support is fabricated as follows: (i) electrosputtering of a thin layer of gold (40 nm) onto a polycarbonate substrate, (ii) spin coating of a polystyrene thin film (500 ± 50 nm) over the gold layer, followed by (iii) polystyrene etching through the spotting of toluene nanovolume (300–900 pL). In each gold-bottomed microwell, a small population of adherent cells (approx. 100 cells) can be cultured. In this miniaturized system, different cell lines can be co-cultured on a 1-cm2 surface, opening the way to multiplexed cell-chip development. In order to keep the cells in a properly hydrated environment and to physically retain them before they adhere, a biocompatible alginate polymer was used during the robotized micropipetting. This approach allows for the encapsulation of the cell in a very small volume (50 nL), directly in the microwells. After 24 h of culture, the cells adhered on the gold bottom of the microwells, and the alginate matrix was removed by addition of calcium-free culture medium.

Graphical Abstract

Multiplex culture of cells was obtained using in situ produced microwells and encapsulated cells. The microwells are produced by organic solvent etching (nanovolume spotting) of a spin-coated polystyrene thin film, and the living multiple cell line deposition is obtained using on-site encapsulation in an alginate bead.

Keywords

Alginate Bare Gold Alginate Capsule Microwell Array Microspectroscopy Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

10853_2014_8145_MOESM1_ESM.docx (999 kb)
Supplementary material 1 (DOCX 999 kb)

References

  1. 1.
    Tanase M, Felton EJ, Gray DS, Hultgren A, Chen CS, Reich DH (2005) Assembly of multicellular constructs and microarrays of cells using magnetic nanowires. Lab Chip 5:598–605CrossRefGoogle Scholar
  2. 2.
    Chandra RA, Douglas ES, Mathies RA, Bertozzi CR, Francis MB (2006) Programmable cell adhesion encoded by DNA hybridization. Angew Chem Int Ed Engl 45:896–901CrossRefGoogle Scholar
  3. 3.
    Chen CS (1997) Geometric control of cell life and death. Science 276:1425–1428CrossRefGoogle Scholar
  4. 4.
    Wood DK, Weingeist DM, Bhatia SN, Engelward BP (2010) Single cell trapping and DNA damage analysis using microwell arrays. PNAS 107:10008–10013CrossRefGoogle Scholar
  5. 5.
    Rettig JR, Folch A (2005) Large-scale single-cell trapping and imaging using microwell arrays. Anal Chem 77:5628–5634CrossRefGoogle Scholar
  6. 6.
    Di Carlo D, Wu LY, Lee LP (2006) Dynamic single cell culture array. Lab Chip 6:1445–1449CrossRefGoogle Scholar
  7. 7.
    Revzin A, Sekine K, Sin A, Tompkins RG, Toner M (2005) Development of a microfabricated cytometry platform for characterization and sorting of individual leukocytes. Lab Chip 5:30–37CrossRefGoogle Scholar
  8. 8.
    Tien J, Nelson CM, Chen CS (2002) Fabrication of aligned microstructures with a single elastomeric stamp. Proc Natl Acad Sci USA 99:1758–1762CrossRefGoogle Scholar
  9. 9.
    Suzuki I, Sugio Y, Moriguchi H, Jimbo Y, Yasuda K (2004) Modification of a neuronal network direction using stepwise photo-thermal etching of an agarose architecture. J Nanobiotechnol 2:7CrossRefGoogle Scholar
  10. 10.
    Alvarez GS, Foglia ML, Copello GJ, Desimone MF, Diaz LE (2009) Effect of various parameters on viability and growth of bacteria immobilized in sol–gel-derived silica matrices. Appl Microbiol Biotechnol 82:639–646CrossRefGoogle Scholar
  11. 11.
    Liu L, Shang L, Guo S, Li D, Liu C, Qi L, Dong S (2009) Organic–inorganic hybrid material for the cells immobilization: long-term viability mechanism and application in BOD sensors. Biosens Bioelectron 25:523–526CrossRefGoogle Scholar
  12. 12.
    Fernandes TG, Kwon SJ, Lee MY, Clark DS, Cabral JM, Dovdick JS (2008) Immunofluorescence assay for high-throughput analysis of target proteins. Anal Chem 80:6633–6639CrossRefGoogle Scholar
  13. 13.
    Lee KH, No DY, Kim SH, Ryoo JH, Wong SF, Lee SH (2011) Diffusion-mediated in situ alginate encapsulation of cell spheroids using microscale concave well and nanoporous membrane. Lab Chip 11:1168–1173CrossRefGoogle Scholar
  14. 14.
    Lecault V, Vaninsberghe M, Sekulovic S, Knapp DJ, Wohrer S, Bowden W, Viel F, McLaughlin T, Jarandehei A, Miller M, Falconnet D, White AK, Kent DG, Copley MR, Taghipour F, Eaves CJ, Humphries RK, Piret JM, Hansen CL (2011) High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays. Nat Methods 8(7):581–586CrossRefGoogle Scholar
  15. 15.
    Pai JH, Kluckman K, Cowley DO, Bortner DM, Sims CE, Allbritton NL (2013) Efficient division and sampling of cell colonies using microcup arrays. Analyst 138:220–228CrossRefGoogle Scholar
  16. 16.
    Wang Z, Kim MC, Marquez M, Thorsen T (2007) High-density microfluidic arrays for cell cytotoxicity analysis. Lab Chip 7:740–745CrossRefGoogle Scholar
  17. 17.
    Köster S, Angilè FE, Duan H, Agresti JJ, Wintner A, Schmitz C, Rowat AC, Merten CA, Pisignano D, Griffiths AD, Weitz DA (2008) Drop-based microfluidic devices for encapsulation of single cells. Lab Chip 8:1110–1115CrossRefGoogle Scholar
  18. 18.
    Beamson G, Briggs D (1992) The XPS of polymer database. Surface Spectra, ChichesterGoogle Scholar
  19. 19.
    Vickerman JC, Briggs D (2001) ToF–SIMS: materials analysis by mass spectrometry, 2nd edn. Surface Spectra, ChichesterGoogle Scholar
  20. 20.
    Mandon CA, Diaz C, Arrigo AP, Blum LJ (2005) Chemical stress sensitive luminescent human cells: molecular biology approach using inducible Drosophila melanogaster hsp22 promoter. Biochem Biophys Res Commun 335:536–544CrossRefGoogle Scholar
  21. 21.
    Kawase T, Sirringhaus H, Friend RH, Shimoda T (2001) Inkjet printed via-hole interconnections and resistors for all-polymer transistor circuits. Adv Mater 13:1601–1605CrossRefGoogle Scholar
  22. 22.
    Piwowar AM, Lockyer N, Vickerman JC (2008) Investigation of molecular weight effects of polystyrene in ToF–SIMS using C-60(+) and Au+ primary ion beams. Appl Surf Sci 255:912–915CrossRefGoogle Scholar
  23. 23.
    Eynde XV, Weng LT, Bertrand P (1997) Influence of tacticity on polymer surfaces studied by ToF–SIMS. Surf Interface Anal 25:41–45CrossRefGoogle Scholar
  24. 24.
    Vickerman JC, Gilmore IS (2009) Surface analysis: the principal techniques, 2nd edn. Wiley, ChichesterCrossRefGoogle Scholar
  25. 25.
    DeMali KA, Barlow CA, Burridge K (2002) Recruitment of the Arp2/3 complex to vinculin: coupling membrane protrusion to matrix adhesion. J Cell Biol 159:881–891CrossRefGoogle Scholar
  26. 26.
    Wiesner S, Lange A, Fässler R (2006) Local call: from integrins to actin assembly. Trends Cell Biol 16:327–329CrossRefGoogle Scholar
  27. 27.
    Yusof A, Keegan H, Spillane CD, Sheils OM, Martin CM, O’Leary JJ, Zengerle R, Koltay P (2011) Inkjet-like printing of single-cells. Lab Chip 11:2447–2454CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ophélie I. Berthuy
    • 1
  • Céline A. Mandon
    • 2
  • Benjamin P. Corgier
    • 2
  • Guillaume G. Octobre
    • 1
  • Giacomo Ceccone
    • 3
  • Valentina Spampinato
    • 3
  • Loïc J. Blum
    • 1
  • Christophe A. Marquette
    • 1
    Email author
  1. 1.Laboratoire de Génie Enzymatique, Membranes Biomimétiques et Assemblages Supramoléculaires, Institut de Chimie et Biochimie Moléculaires et SupramoléculairesUniversité Claude Bernard Lyon 1 – University of Lyon – CNRS 5246 ICBMSVilleurbanneFrance
  2. 2.AXO ScienceVilleurbanneFrance
  3. 3.Européen Commission, Joint Research CentreInstitute for Heath and Consumer ProtectionIspraItaly

Personalised recommendations