Skip to main content
Log in

Thermoelectric performance of tellurium and sulfur double-substituted skutterudite materials

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Two series of skutterudite materials, Co4Sb11.3Te0.7−x S x (x = 0.07–0.2) and Co4Sb12−x S x (x = 0.07–0.15), were synthesized through solid state reaction and consolidated by spark plasma sintering. The samples were characterized by powder X-ray diffraction, electron probe analysis, and measurements of electrical conductivity, Hall coefficient, Seebeck coefficient, and thermal conductivity. The results indicate that sulfur in Co4Sb12−x S x most likely forms the CoSbS compound and is unlikely to get into the CoSb3 lattice, while it can dissolve in Co4Sb12−x Te x compounds due to the radius compensation when fabricated by the methods in this study. The lattice thermal conductivity decreases from 2.07 Wm−1 K−1 for tellurium single-doped Co4Sb11.3Te0.7 to 1.46–1.67 Wm−1 K−1 for Co4Sb11.3Te0.7−x S x (x = 0.07–0.20) at 800 K. The thermoelectric performance is significantly enhanced by tellurium–sulfur co-doping in Co4Sb11.3Te0.7−x S x compounds, and a peak dimensionless figure of merit ~1.1 is achieved in Co4Sb11.3Te0.63S0.07. The enhancement is mainly attributed to the great reduction of the lattice thermal conductivity due to the increased phonon scattering by the sulfur defect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Sales BC, Mandrus D, Williams RK (1996) Filled skutterudite antimonides: a new class of thermoelectric materials. Science 272:1325–1328

    Article  Google Scholar 

  2. Sootsman JR, Chung DY, Kanatzidis MG (2009) New and old concepts in thermoelectric materials. Angew Chem Int Edit 48:8616–8639

    Article  Google Scholar 

  3. Caillat T, Borshchevsky A, Fleurial J-P (1996) Properties of single crystalline semiconducting CoSb3. J Appl Phys 80:4442–4449

    Article  Google Scholar 

  4. Cho JY, Ye Z, Tessema MM, Salvador JR, Waldo RA, Yang J, Zhang WQ, Yang JH, Cai W, Wang H (2013) Thermoelectric performance of p-type skutterudites Yb x Fe4−y Pt y Sb12 (0.8 ≤ x ≤ 1, y = 1 and 0.5). J Appl Phys 113:143708

    Article  Google Scholar 

  5. Shi X, Yang J, Salvador JR, Chi MF, Cho JY, Wang H, Bai SQ, Yang JH, Zhang WQ, Chen LD (2011) Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. J Am Chem Soc 133:7837–7846

    Article  Google Scholar 

  6. Zhang JJ, Xu B, Wang LM, Yu DL, Yang JQ, Yu FR, Liu ZY, He JL, Wen B, Tian YJ (2012) High-pressure synthesis of phonon-glass electron-crystal featured thermoelectric Li x Co4Sb12. Acta Mater 60:1246–1251

    Article  Google Scholar 

  7. Puyet M, Lenoir B, Dauscher A, Candolfi C, Hejtmanek J, Stiewe C, Muller E (2012) Influence of Ni impurities on the thermoelectric properties of Ca-partially filled skutterudites Ca x Co4Sb12. Appl Phys Lett 101:222105

    Article  Google Scholar 

  8. Tang XF, Chen LD, Goto T, Hirai T, Yuan RZ (2001) Synthesis and thermoelectric properties of filled skutterudite compounds Ce y Fe x Co4−x Sb12 by solid state reaction. J Mater Sci 36:5435–5439. doi:10.1023/A:1012473428845

    Article  Google Scholar 

  9. Chi H, Kim H, Thomas JC, Su XL, Stackhouse S, Kaviany M, Ven der Ven A, Tang XF, Uher C (2012) Configuring pnicogen rings in skutterudites for low phonon conductivity. Phys Rev B 86:195209

    Article  Google Scholar 

  10. Liu WS, Zhang BP, Zhao LD, Li JF (2008) Improvement of thermoelectric performance of CoSb3−x Te x skutterudite compounds by additional substitution of IVB-Group elements for Sb. Chem Mater 20:7526–7531

    Article  Google Scholar 

  11. Duan B, Zhai PC, Liu LS, Zhang QJ, Ruan XF (2012) Beneficial effect of Se substitution on thermoelectric properties of Co4Sb11.9−x Te x Se0.1 skutterudites. J Solid State Chem 193:8–12

    Article  Google Scholar 

  12. Mallik RC, Anbalagan R, Rogl G, Royanian E, Heinrich P, Bauer E, Rogl P, Suwas S (2013) Thermoelectric properties of Fe0.2Co3.8Sb12−x Te x  skutterudites. Acta Mater 61:6698–6711

    Article  Google Scholar 

  13. Stiewe C, Bertini L, Toprak M, Christensen M, Platzek D, Williams S, Gatti C, Muller E, Iversen BB, Muhammed M, Rowe M (2005) Nanostructured Co1−x Ni x (Sb1−y Te y )3 skutterudites: theoretical modeling, synthesis and thermoelectric properties. J Appl Phys 97:044317

    Article  Google Scholar 

  14. Alleno E, Zehani E, Rouleau O (2013) Metallurgical and thermoelectric properties in Co1−x Pd x Sb3 and Co1−x Ni x Sb3 revisited. J Alloys Compd 572:43–48

    Article  Google Scholar 

  15. Anno H, Matsubara K, Notohara Y, Sakakibara T, Tashiro H (1999) Effects of doping on the transport properties of CoSb3. J Appl Phys 86:3780–3786

    Article  Google Scholar 

  16. Duan B, Zhai PC, Liu LS, Zhang QJ (2012) Effects of Se substitution on the thermoelectric performance of n-type Co4Sb11.3Te0.7−x Se x skutterudites. Mater Res Bull 47:1670–1673

    Article  Google Scholar 

  17. Sharp JW, Jones EC, Williams RK, Martin PM, Sales BC (1995) Thermoelectric properties of CoSb3 and related alloys. J Appl Phys 78:1013–1018

    Article  Google Scholar 

  18. Mallik RC, Mueller E, Kim I-H (2012) Thermoelectric properties of indium filled and germanium doped Co4Sb12 skutterudites. J Appl Phys 111:023708

    Article  Google Scholar 

  19. Lamberton GA, Bhattacharya S, Littleton RT, Kaeser MA, Tedstrom RH, Tritt TM, Yang J, Nolas GS (2002) High figure of merit in Eu-filled CoSb3-based skutterudites. Appl Phys Lett 80:598–600

    Article  Google Scholar 

  20. Wojciechowski KT, Tobola J, Leszczynski J (2003) Thermoelectric properties and electronic structure of CoSb3 doped with Se and Te. J Alloys Compd 361:19–27

    Article  Google Scholar 

  21. Duan B, Zhai PC, Liu LS, Zhang QJ (2012) Enhanced thermoelectric performance in sulfur-doped Co4Sb11.9−x Te x S0.1 skutterudites. Mater Lett 79:69–71

    Article  Google Scholar 

  22. Toby BH (2001) A graphical user interface for GSAS. J Appl Cryst 34:210–213

    Article  Google Scholar 

  23. Anno H, Hatada K, Shimizu H, Matsubara K, Notohara Y, Sakakibara T, Tashiro H, Motoya K (1998) Structural and electronic transport properties of polycrystalline p-type CoSb3. J Appl Phys 83:5270–5276

    Article  Google Scholar 

  24. Mandrus D, Migliori A, Darling TW, Hundley MF, Peterson EJ, Thompson JD (1995) Electronic transport in lightly doped CoSb3. Phys Rev B 52:4926–4931

    Article  Google Scholar 

  25. Li XY, Chen LD, Fan JF, Zhang WB, Kawahara T, Hirai T (2005) Thermoelectric properties of Te-doped CoSb3 by spark plasma sintering. J Appl Phys 98:083702

    Article  Google Scholar 

  26. Su XL, Li H, Wang GY, Chi H, Zhou XY, Tang XF, Zhang QJ, Uher C (2011) Structure and transport properties of double-doped CoSb2.75Ge0.25−x Te x (x = 0.125–0.20) with in situ nanostructure. Chem Mater 23:2948–2955

    Article  Google Scholar 

  27. Parker D, May AF, Wang H, McGuire MA, Sales BC, Singh DJ (2013) Electronic and thermoelectric properties of CoSbS and FeSbS. Phys Rev B 87:045205

    Article  Google Scholar 

  28. Abeles B (1963) Lattice thermal conductivity of disordered semiconductor alloys at high temperatures. Phys Rev 131:1906–1911

    Article  Google Scholar 

  29. Meisner GP, Morelli DT, Hu S, Yang J, Uher C (1998) Structure and lattice thermal conductivity of fractionally filled skutterudites: solid solutions of fully filled and unfilled end members. Phys Rev Lett 80:3551

    Article  Google Scholar 

  30. Yang J, Morelli DT, Meisner GP, Chen W, Dyck JS, Uher C (2002) Influence of electron-phonon interaction on the lattice thermal conductivity of Co1−x Ni x Sb3. Phys Rev B 65:094115

    Article  Google Scholar 

  31. Wu T, Jiang W, Li XY, Bai SQ, Liufu SC, Chen LD (2009) Effects of Ge doping on the thermoelectric properties of TiCoSb-based p-type half-Heusler compounds. J Alloys Compd 467:590–594

    Article  Google Scholar 

  32. Su XL, Li H, Yan YG, Wang GY, Chi H, Zhou XY, Tang XF, Zhang QJ, Uher C (2012) Microstructure and thermoelectric properties of CoSb2.75Ge0.25−x Te x prepared by rapid solidification. Acta Mater 60:3536–3544

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Development Program of China (No. 2012AA051104), National Basic Research Program of China (No. 2013CB632505), National Natural Science Foundation of China (Nos. 51272198 and 51302205), Program of International Science and Technology Cooperation (No. S2014ZR0064), and China Postdoctoral Science Foundation (No. 2013M531752). The authors would like to acknowledge Meijun Yang and Xiaolei Nie (from the Cencer for Materials Research and Analysis of Wuhan University of Technology) for the assistance on the EPMA measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengcheng Zhai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, B., Zhai, P., Xu, C. et al. Thermoelectric performance of tellurium and sulfur double-substituted skutterudite materials. J Mater Sci 49, 4445–4452 (2014). https://doi.org/10.1007/s10853-014-8141-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8141-3

Keywords