Skip to main content
Log in

Preparation, characterization, and photocatalytic properties of composite materials of copper(II) porphyrin/TiO2

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Three new CuPp–TiO2 composite materials were prepared by impregnating copper(II) porphyrin with different peripheral substituent (–OH, –COOC2H5, and –COOH) onto the surface of polycrystalline TiO2 at room temperature and characterized by SEM, energy-dispersive X-ray spectrometry, X-ray diffraction, FT-IR, UV–Vis DRS, and photoluminescence. The effects of metalloporphyrins on the surface of TiO2 have been detected by the photodegradation of 4-nitrophenol (4-NP) and rhodamine B (RhB). The loading of metalloporphyrins onto TiO2 results in strong visible light absorption by the composite and, more importantly, a 1.47–2.47 times increase in visible light photocatalytic activity in the degradation of RhB. The metalloporphyrins dispersed on the TiO2 surface can act as a small-band-gap semiconductor to absorb visible light, giving rise to electron–hole separation. What’s more, these CuPp–TiO2 with different peripheral substituent (–OH, –COOC2H5, and –COOH) in meso-sites of porphyrin ring displayed different catalytic activities in the degradation of 4-NP and RhB, the CuPp containing –OH and –COOH showed better catalytic activity due to their strong interaction with TiO2. A possible mechanism of these higher photocatalytic efficiencies was proposed based on the relative experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Breslow R, Yang J, Yan JM (2002) Biomimetic hydroxylation of saturated carbons with artificial cytochrome P-450 enzymes-liberating chemistry from the tyranny of functional groups. Tetrahedron 58:653–659

    Article  Google Scholar 

  2. Ambroise A, Li JZ, Yu LH, Lindsey JS (2000) A self-assembled light-harvesting array of seven porphyrins in a wheel and spoke architecture. Org Lett 2:2563–2566

    Article  Google Scholar 

  3. Qiu WG, Li ZF, Bai GM, Meng SN, Dai HX, He H (2007) Study on the inclusion behavior between meso-tetrakis [4-(3-pyridiniumpropoxy) phenyl] prophyrin tetrakis-bromide and b-cyclodextrin derivatives in aqueous solution. Spectrochim Acta A Mol Biomol Spectrosc 66:1189–1193

    Article  Google Scholar 

  4. Matthews RW (1991) Photooxidative degradation of coloured organics in water using supported catalysts TiO2 on sand. Water Res 25:1169–1176

    Article  Google Scholar 

  5. Chen HY, Jin HX, Dong B (2012) Preparation of magnetically supported chromium and sulfur co-doped TiO2 and use for photocatalysis under visible light. Res Chem Intermed 38:2335–2342

    Article  Google Scholar 

  6. Isimjan TT, Kazemian H, Rohani S, Ray AjayK (2010) Photocatalytic activities of Pt/ZIF-8 loaded highly ordered TiO2 nanotubes. J Mater Chem 20:10241–10245

    Article  Google Scholar 

  7. Yang Y, Zhong H, Tian CX (2011) Photocatalytic mechanisms of modified titania under visible light. Res Chem Intermed 37:91–102

    Article  Google Scholar 

  8. Jang JH, Jeon KS, Oh S, Kim HJ, Asahi T, Masuhara H, Yoon M (2007) Synthesis of Sn-porphyrin-intercalated trititanate nanofibers: optoelectronic properties and photocatalytic activities. Chem Mater 19:1984–1991

    Article  Google Scholar 

  9. Kim W, Park J, Jo HJ, Kim HJ, Choi W (2008) Visible light photocatalysts based on homogeneous and heterogenized tin porphyrins. J Phys Chem C 112:491–499

    Article  Google Scholar 

  10. Wang C, Li J, Mele G, Yang GM, Zhang FX, Palmisano L, Vasapollo G (2007) Efficient degradation of 4-nitrophenol by using functionalized porphyrin-TiO2 photocatalysts under visible irradiation. Appl Catal B 76:218–226

    Article  Google Scholar 

  11. Campbell WM, Burrell AK, Officer DL, Jolley KW (2004) Porphyrins as light harvesters in the dye-sensitised TiO2 solar cell. Coord Chem Rev 248:1363–1379

    Article  Google Scholar 

  12. Odobel F, Blart E, Lagrée M, Villieras M, Boujtita H, Murr NE, Caramori S, Bignozzi CA (2003) Porphyrin dyes for TiO2 sensitization. J Mater Chem 13:502–510

    Article  Google Scholar 

  13. Mele G, Ciccarella G, Vasapollo G, García-López E, Palmisano L, Schiavello M (2002) Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO2 Samples impregnated with Cu(II)-phthalocyanine. Appl Catal B38:309–319

    Article  Google Scholar 

  14. Mele G, Sole RD, Vasapollo G, García-López E, Palmisano L, Schiavello M (2003) Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO2 impregnated with functionalized Cu(II)-porphyrin or Cu(II)-phthalocyanine. J Catal 217:334–342

    Google Scholar 

  15. Mele G, Sole RD, Vasapollo G, García-López E, Palmisano L, Mazzetto SE, Attanasi OA, Filippone P (2004) Polycrystalline TiO2 impregnated with cardanol-based porphyrins for the photocatalytic degradation of 4-nitrophenol. Green Chem 6:604–608

    Article  Google Scholar 

  16. Wang C, Yang GM, Li J, Mele G, Słota R, Broda MA, Duan MY, Vasapollo G, Zhang XF, Zhang FX (2009) Novel meso-substituted porphyrins: synthesis, characterization and photocatalytic activity of their TiO2-based composites. Dyes Pigm 80:321–328

    Article  Google Scholar 

  17. Granados-Oliveros G, Páez-Mozo EA, Ortega FM, Ferronato C, Chovelon JM (2009) Degradation of atrazine using metalloporphyrins supported on TiO2 under visible light irradiation. Appl Catal B 89:448–454

    Article  Google Scholar 

  18. Sun WJ, Li J, Yao GP, Zhang FX (2011) Surface-modification of TiO2 with new metalloporphyrins and their photocatalytic activity in the degradation of 4-notrophenol. Appl Surf Sci 258:940–945

    Article  Google Scholar 

  19. Sun WJ, Li J, Yao GP, Jiang M, Zhang FX (2011) Efficient photodegradation of 4-nitrophenol by using new CuPp–TiO2 photocatalyst under visible light irradiation. Catal Commun 16:90–93

    Article  Google Scholar 

  20. Ishibashi K, Fujishima A, Watanabe T, Hashimoto K (2000) Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique. Electrochem Commun 2:207–210

    Article  Google Scholar 

  21. Bai SL, Li HY, Guan YJ, Jiang ST (2011) The enhanced photocatalytic activity of CdS/TiO2 nanocomposites by controlling CdS dispersion on TiO2 nanotubes. Appl Surf Sci 257:6406–6409

    Article  Google Scholar 

  22. Cherian S, Wamser CC (2000) Adsorption and photoactivity of tetra (4-carboxyphenyl) porphyrin (TCPP) on nanoparticulate TiO2. J Phys Chem B 104:3624–3629

    Article  Google Scholar 

  23. Li XQ, Liu LF, Kang SZ et al (2012) Titanate nanotubes co-sensitized with cadmium sulfide nanoparticles and porphyrin zinc: preparation and enhanced photocatalytic activity under visible light. Catal Commun V17:136–139

    Article  Google Scholar 

  24. Kathiravan A, Renganathan R (2009) Effect of anchoring group on the photosensitization of colloidal TiO2 nanoparticles with porphyrins. J Colloid Interface Sci 331:401–407

    Article  Google Scholar 

  25. Ma TL, Inoue K, Noma H, Yao K, Abe E (2002) Effect of functional group on photochemical properties and photosensitization of TiO2 electrode sensitized by porphyrin derivatives. J Photochem Photobiol A 152:207–212

    Article  Google Scholar 

  26. Ma TL, Inoue K, Noma H, Yao K, Abe E et al (2002) Photoelectrochemical properties of TiO2 electrodes sensitized by porphyrin derivatives with different numbers of carboxyl groups. J Electroanal Chem 537:31–38

    Article  Google Scholar 

  27. Chen DM, Yang D, Geng JQ, Zhu JH, Jiang ZY (2008) Improving visible-light photocatalytic activity of N-doped TiO2 nanoparticles via sensitization by Zn porphyrin. Appl Surf Sci 255:2879–2884

    Article  Google Scholar 

  28. Su BT, Liu XH, Peng XX, Xiao T, Su ZX (2003) Preparation and characterization of the TiO2/polymer complex nanomaterial. Mater Sci Eng A349:59–62

    Article  Google Scholar 

  29. Su BT, Ma ZY, Min SX, She SX, Wang ZY (2007) Preparation of TiO2/PS complex nanoparticles. Mater Sci Eng A 458:44–47

    Article  Google Scholar 

  30. Wang YX, Li XY, Lu G, Quan X, Chen GH (2008) Highly oriented 1-D ZnO nanorod arrays on zinc foil: direct growth from substrate, optical properties and photocatalytic activities. J Phys Chem C112:7332–7336

    Google Scholar 

  31. Baiju KV, Zachariah A, Shukla S, Biju S, Reddy MLP, Warrier KGK (2009) Correlating photoluminescence and photocatalytic activity of mixed-phase nanocrystalline titania. Catal Lett 130:130–136

    Article  Google Scholar 

  32. Li XQ, Liu LF, Kang SZ, Mu J, Li GD (2011) Differences between Zn-porphyrin-coupled titanate nanotubes with various anchoring modes: thermostability, spectroscopic, photocatalytic and photoelectronic properties. Appl Surf Sci 257:5950–5956

    Article  Google Scholar 

  33. Yao HT, Chien HK (2011) Photocatalytic degradation of dye and NOx using visible-light-responsive carbon-containing TiO2. Catal Today 174:114–120

    Article  Google Scholar 

  34. Li XZ, Chen CC, Zhao JC (2001) Mechanism of photodegradation of H2O2 on TiO2 surfaces under visible light irradiation. Langmuir 17:4118–4122

    Article  Google Scholar 

  35. Salvador P (2007) On the nature of photogenerated radical species active in the oxidative degradation of dissolved pollutants with TiO2 Aqueous suspensions: a revision in the light of the electronic structure of adsorbed water. J Phys Chem C 111:17038–17043

    Article  Google Scholar 

  36. Souza FD, Deviprasad GR, El-Khouly ME, Fujitsuka M, Ito O (2001) Probing the donor-acceptor proximity on the physicochemical properties of porphyrin-fullerene dyads: “tail-on” and “tail-off” binding approach. J Am Chem Soc 123:5277–5284

    Article  Google Scholar 

  37. Salzner U, Lagowski JB, Pickup PG, Poirier RA (1998) Comparison of geometries and electronic structures of polyacetylene, polyborole, polycyclopentadiene, polypyrrole, polyfuran, polysilole, polyphosphole, polythiophene, polyselenophene and polytellurophene. Synth Met 96:177–189

    Article  Google Scholar 

  38. Snook JH, Samuelson LA, Kumar J, Kim YG, Whitten JE (2005) Ultraviolet photoelectron spectroscopy of nanocrystalline TiO2 films sensitized with (2,2′-bipyridyl)ruthenium(II) dyes for photovoltaic applications. Org Electron 6:55–64

    Article  Google Scholar 

  39. Li TB, Chen G, Zhou C, Shen ZY, Jin RC, Sun JX (2011) New photocatalyst BiOCl/BiOI composites with highly enhanced visible light photocatalytic performances. Dalton Trans 40:6751–6758

    Article  Google Scholar 

  40. Rao YF, Chu W (2009) Reaction mechanism of linuron degradation in TiO2 suspension under visible light irradiation with the assistance of H2O2. Environ Sci Technol 43:6183–6189

    Article  Google Scholar 

  41. Hilal HS, Majjad LZ, Zatar N, El-Hamouz A (2007) Dye-effect in TiO2 catalyzed contaminant photodegradation: sensitization vs. charge-transfer formalism. Solid State Sci 9:9–15

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the research grant provided by the National Nature Science Foundation of China (21271148) and The Educational Committee Foundation of Shaanxi Province (12JK0637) that resulted in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Mm., Li, J., Sun, Wj. et al. Preparation, characterization, and photocatalytic properties of composite materials of copper(II) porphyrin/TiO2 . J Mater Sci 49, 5519–5528 (2014). https://doi.org/10.1007/s10853-014-8132-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8132-4

Keywords

Navigation