Quantitative determination of raw and functionalized carbon nanotubes for the antibacterial studies

Abstract

The UV–visible spectrophotometric method has been described the study of raw carbon nanotubes (R-MWCNTs) and functionalized multiwall carbon nanotubes (F-MWCNTs) for the control of bacterial growth by using validated analytical techniques. The absorption spectra of functionalized carbon nanotubes (F-MWCNTs) and raw carbon nanotubes (R-MWCNTs) show maximum absorbance at λ max 600 nm. The linear relationship was found between absorbance and concentration of R-MWCNTs and F-MWCNTs in the range of 0.25–2.0 μg mL−1. The linear regression equation was evaluated by statistical treatment of calibration data and gives the value of correlation coefficient for F-MWCNTs (0.9999) and R-MWCNTs (0.9993), which indicate excellent linearity. The Optical and regression characteristics of the proposed method were found apparent molar absorptivity, limits of detection (LOD), and limit of quantitation (LOQ) for R-MWCNTs and F-MWCNTs (5.75 × 102: 8.25 × 102 L mol−1 cm−1), (0.052: 0.018 μg mL−1), and (0.055: 0.158 μg mL−1), respectively. The validity of the proposed method was checked by precision, accuracy, linearity, limits of detection (LOD), and limit of quantitation (LOQ). The RSD (%) and quantitative recoveries (%) were obtained (0.026–0.0086) and (100.34 and 100.71) for R-MWCNTs: for F-MWCNTs by UV–visible spectrophotometric, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Karunakaran C, Gomathisankar P, Manikandan G (2010) Preparation and characterization of anti microbial Ce-doped ZnO nanoparticles for photocatalytic detoxification of cyanide. J Colloid Interface Sci 352(1):68

    Article  Google Scholar 

  2. 2.

    Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Article  Google Scholar 

  3. 3.

    Wahab R, Kim YS, Mishra A, Yun SIl, Shin HS (2010) Formation of ZnO micro-flowers prepared via solution process and their antibacterial activity. Nanoscale Res Lett 5:1675–1681

  4. 4.

    Liang M, Jin F, Liu R, Su R, Qi W, Yu Y, Wang L, He Z (2013) Enhanced electrochemical detection performance of multiwall carbon nanotubes functionalized by aspartame. J Mater Sci 48(16):5624–5632. doi:10.1007/s10853-013-7357-y

    Article  Google Scholar 

  5. 5.

    Mecklenburg M, Schuchardt A, Mishra YK, Kaps S, Adelung R, Lotnyk A, Kienle L, Schulte K (2012) Aerographite: ultra lightweight, flexible nanowall, carbon microtube material with outstanding mechanical performance. Adv Mater 24:3486–3490

    Google Scholar 

  6. 6.

    Parlak O, Turner APF, Tiwari A (2014) On/off-switchable zipper-like bioelectronics on a graphene interface. Adv Mater 26(3):482–486

    Article  Google Scholar 

  7. 7.

    Tiwari A, Sharma Y, Hattori S, Terada D, Sharma AK, Turner AP, Kobayashi H (2013) Influence of poly (n-isopropylacrylamide)-CNT-polyaniline three-dimensional electrospun microfabric scaffolds on cell growth and viability. Biopolymers 99(5):334–341

    Article  Google Scholar 

  8. 8.

    Shaffer MSP, Windle AH (1999) Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites. Adv Mater 11(11):937–941

    Article  Google Scholar 

  9. 9.

    Xie XL, Mai YW, Zhou XP (2005) Dispersion and alignment of carbon nanotubes in polymer matrix a review. Mat Sci Eng R R49:89–112

    Article  Google Scholar 

  10. 10.

    Chen J, Rao AM, Lyuksyutov S, Itkis ME, Hamon MA, Hu H, Cohn RW, Eklund PC, Colbert DT, Smalley RE, Haddon RC (2001) Dissolution of full-length single-walled carbon nanotubes. J Phys Chem B 105:2525–2528

    Article  Google Scholar 

  11. 11.

    Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB, Rodriguez-Macias F, Shon YS, Lee TR, Colbert DT, Smalley RE (1998) Fullerene pipes. Science 280(5367):1253–1256

    Article  Google Scholar 

  12. 12.

    Georgakilas V, Tagmatarchis N, Pantarotto D, Bianco A, Briand JP, Prato M (2002) Amino acid functionalisation of water soluble carbon nanotubes. Chem Commun 24:3050–3051

    Article  Google Scholar 

  13. 13.

    Tasis D, Tagmatarchis N, Georgakilas V, Prato M (2003) Soluble carbon nanotubes. Chemistry 9(17):4000–4008

    Article  Google Scholar 

  14. 14.

    Robers M, Rensink IJAM, Hack CE, Aarden CE, Reutelingsperger CPM, Glatz JFC, Hermens WT (1999) A new principle for rapid immunoassay of proteins based on in situ precipitate-enhanced ellipsometry. Biophys J 76:2769–2776

    Article  Google Scholar 

  15. 15.

    McNeil CJ, Athey D, Ho WO (1995) Direct electron transfer bioelectronic interfaces: application to clinical analysis. Biosens Bioelectron 10:75–83

    Article  Google Scholar 

  16. 16.

    Neelgund GM, Oki A (2011) Deposition of silver nanoparticles on dendrimer functionalized multi walled carbon nanotubes: synthesis, characterization and antimicrobial activity. J Nanosci Nanotechnol 11(4):3621–3629

    Article  Google Scholar 

  17. 17.

    Brown CD, Vega-Montoto L, Wentzell PD (2000) Derivative preprocessing and optimal corrections for baseline drift in multivariate calibration. Appl Spectrosc 54:1055–1068

    Google Scholar 

  18. 18.

    Barnes RJ, Dhanoa MS, Lister SJ (1989) Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl Spectrosc 43:772–777

    Article  Google Scholar 

  19. 19.

    Martens H, Nielsen JP, Engelsen SB (2003) Light scattering and light absorbance separated by extended multiplicative signal correction. Application to near-infrared transmission analysis of powder mixtures. Anal Chem 75(3):394–404

    Article  Google Scholar 

  20. 20.

    Pedersen DK, Martens H, Nielsen JP, Engelsen SB (2002) Near-infrared absorption and scattering separated by extended inverted signal correction (EISC): analysis of near-infrared transmittance spectra of single wheat seeds. Appl Spectrosc 56(9):1206–1214

    Article  Google Scholar 

  21. 21.

    Long JR, Gregoriou VG, Gemperline PJ (1990) Spectroscopic calibration and quantitation using artificial neural networks. Anal Chem 62(17):1791–1797

    Article  Google Scholar 

  22. 22.

    Chen T, Morris J, Martin E (2007) Gaussian process regression for multivariate spectroscopic calibration. Chemometr Intell Lab Syst 87(1):59–67

    Article  Google Scholar 

  23. 23.

    Yin Q, Wang L, Sun M (2012) Determination of copper by spectrophotometry with carbon nanotubes. Int J Electrochem Sci 7:10994–11000

    Google Scholar 

  24. 24.

    Wahab R, Ansari SG, Kim YS, Mohanty TR, Hwang IH, Shin HS (2009) Immobilization of DNA on nano hydroxyapatite and their interaction with carbon nanotubes. Synt Metals 159:238–245

    Article  Google Scholar 

  25. 25.

    Kim YS, Cho JH, Ansari SG, Kim HIl, Dar MA, Seo HK, Kim GS, Lee DS, Khang G, Shin HS (2006) Immobilization of avidin on the functionalized carbon nanotubes. Synth Met 156:938–943

  26. 26.

    Wahab R, Mishra A, Yun SIl, Kim YS, Shin HS (2010) Antibacterial activity of ZnO nanoparticles prepared via non-hydrolytic solution route. Appl Microbiol Biotech 87(5):1917–1925

  27. 27.

    Sun YP, Fu K, Lin Y, Huang W (2002) Functionalized carbon nano-tubes: properties and applications. Acc Chem Res 35:1096–1104

    Article  Google Scholar 

  28. 28.

    Fu G, Vary PS, Lin CT (2005) Anatase TiO2 nanocomposites for antimicrobial coatings. J Phys Chem B 109:8889–8898

    Article  Google Scholar 

  29. 29.

    Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686

    Article  Google Scholar 

  30. 30.

    Kang S, Mauter MS (2008) Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity. Environ Sci Technol 42(19):7528–7534

    Article  Google Scholar 

  31. 31.

    Young YF, Lee HJ, Shen YS, Tseng SH, Lee CY, Tai NH, Chang HY (2012) Toxicity mechanism of carbon nanotubes on Escherichia coli. Mater Chem Phys 134:279–286

    Article  Google Scholar 

  32. 32.

    Li WR, Xie BX, Shi QS, Zeng HY, Ou-Yang YS, Chen YB (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85(4):1115–1122

    Article  Google Scholar 

  33. 33.

    Li Kang, Xiaohua Z, Yong L (2012) Gold nanoparticles/carbon nanotubes composite film modified glassy carbon electrode determination of meclofenoxate hydrochloride. Pharmacol Pharm 3:275–280

    Article  Google Scholar 

  34. 34.

    International Conference on Harmonisation, Harmonized Tripartity Guideline, Validation of Analytical Procedures. November (2005). Text and Methodology, Q2 (R1) www.ich.Org

  35. 35.

    Baghbamidi SE, Beitollahi H, Karimi-Maleh H, Soltani-Nejad S, Vahhab Soltani-Nejad, Roodsaz S (2012) Modified carbon nanotube paste electrode for voltammetric determination of carbidopa, folic acid, and tryptophan. J Anal Methods Chem 2012:305872

    Google Scholar 

  36. 36.

    Yanez-Sedeno P, Riu J, Pingarron MJ, Rius FX (2010) Electrochemical sensing based on carbon nanotubes. Trends Anal Chem 29(9):939–953

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by King Saud University, Deanship of Scientific Research, College of Sciences Research Center.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rizwan Wahab.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wahab, R., Khan, F., Rashid, M. et al. Quantitative determination of raw and functionalized carbon nanotubes for the antibacterial studies. J Mater Sci 49, 4288–4296 (2014). https://doi.org/10.1007/s10853-014-8124-4

Download citation

Keywords

  • Carbon Nanotubes
  • Poly Aniline
  • Multiwall Carbon Nanotubes
  • Gaussian Process Regression
  • Functionalized Carbon Nanotubes