Skip to main content
Log in

First-principles study of 4d solute diffusion in nickel

  • Intergranular and Interphase Boundaries
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Diffusion of the 4d transition elements in Ni has been investigated within the five-frequency model framework using migration energy barriers calculated from the first principles. Agreement with counterintuitive experimental/calculated data is observed; atoms in the middle of 4d row have the smallest atomic radii while exhibiting the lowest diffusivity as compared to larger atoms at the beginning and the end of 4d row. We show that 4d solute diffusion is controlled mainly by the size misfit. The larger atoms have higher solute–vacancy binding energies and lower migration barriers. Both were shown to correlate with a displacement of the equilibrium solute position toward the adjacent vacancy. The difference in mechanisms controlling sp- and transition elements diffusion rates in Ni is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Donachie MJ, Donachie SJ (2002) Superalloys: a technical guide, 2nd edn. ASM International, Materials Park

    Google Scholar 

  2. Davis JR (2000) ASM specialty handbook: nickel, cobalt, and their alloys. ASM International, Materials Park

    Google Scholar 

  3. Le Claire AD (1978) Solute diffusion in dilute alloys. J Nucl Mater 69–70:70–96

    Article  Google Scholar 

  4. Manning JR (1968) Diffusion kinetics for atoms in crystals. Van Nostrand, London

    Google Scholar 

  5. Howard RE, Manning JR (1967) Kinetics of solute-enhanced diffusion in dilute face-centered-cubic alloys. Phys Rev 154:561

    Article  Google Scholar 

  6. Janotti A, Krčmar M, Fu CL, Reed RC (2004) Solute diffusion in metals: larger atoms can move faster. Phys Rev Lett 92:085901

    Article  Google Scholar 

  7. Krčmar M, Fu CL, Janotti A, Reed RC (2005) Diffusion rates of 3d transition metal solutes in nickel by first-principles calculation. Acta Mater 53:2369

    Article  Google Scholar 

  8. Qiong W, Shu-Suo L, Yue M, Sheng-Kai G (2012) First principles calculations of alloying element diffusion coefficients in Ni using the five-frequency model. Chin Phys B 21:109102

    Article  Google Scholar 

  9. Zacherl CL (2012) A computational investigation of the effect of alloying elements on the thermodynamic and diffusion properties of fcc Ni alloys, with application to the creep rate of dilute Ni–X alloys. PhD thesis, Penn State University

  10. Mantina M, Wang Y, Chen LQ, Liu ZK, Wolverton C (2009) First principles impurity diffusion coefficients. Acta Mater 57:4102

    Article  Google Scholar 

  11. Sandberg N, Holmestad R (2006) First-principles calculations of impurity diffusion activation energies in Al. Phys Rev B 73:014108

    Article  Google Scholar 

  12. Simonovic D, Sluiter MHF (2009) Impurity diffusion activation energies in Al from first principles. Phys Rev B 79:054304

    Article  Google Scholar 

  13. Glicksman ME (1999) Diffusion in solids: field theory, solid state principles and applications. Wiley, New York

    Google Scholar 

  14. Mehrer H (1990) Landolt–Bornstein—New Series III/26: atomic defects and diffusion. Diffusion in solid metals and alloys. Springer, Berlin

    Google Scholar 

  15. Neumann G, Hirschwald W (1974) The correlation factor of impurity diffusion in F.C.C metals. Zeitschrift für Physikalische Chemie 89:309–319

    Article  Google Scholar 

  16. Ledbetter HM, Reed RP (1973) Elastic properties of metals and alloys, I. Iron, nickel, and iron–nickel alloys. J Phys Chem Ref Data 2:531

    Article  Google Scholar 

  17. Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169

    Article  Google Scholar 

  18. Kresse G, Hafner J (1994) Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J Phys 6:8245

    Google Scholar 

  19. Kresse G, Joubert J (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758

    Article  Google Scholar 

  20. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953

    Article  Google Scholar 

  21. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671 and (1993) Erratum. Phys Rev B 48:4978

    Article  Google Scholar 

  22. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200

    Article  Google Scholar 

  23. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188

    Article  Google Scholar 

  24. Adams JB, Foiles SM, Wolfer WG (1989) Self-diffusion and impurity diffusion of FCC metals using the 5-frequency model and the Embedded Atom Method. J Mater Res 4:102

    Article  Google Scholar 

  25. http://webelements.com/. Accessed 20 December 2013

  26. Allison HW, Samelson H (1959) Diffusion of aluminum, magnesium, silicon, and zirconium in nickel. J Appl Phys 30(9):1419–1424

    Article  Google Scholar 

  27. Novikov DL, Cetel A, Maloney M, Schlichting K, Cowles B, Okatov S, Lomayev I, Gornostyrev Yu, Burlatsky S (2011) Electronic origin of fast sulfur diffusion in 3d transition metals. Bull Amer Phys Soc 01:56

    Google Scholar 

  28. Lomaev IL, Novikov DL, Okatov SV, Gornostyrev YuN et al (2014) On mechanism of sulfur fast diffusion in 3d transition metals. Acta Mater 67:95–101

    Article  Google Scholar 

Download references

Acknowledgements

The work of Lomaev I.L. was partially supported by a RFBR Project No. 13-03-00641 and Ural Branch of RAS Project No 12-U-2-1004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. L. Lomaev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lomaev, I.L., Novikov, D.L., Okatov, S.V. et al. First-principles study of 4d solute diffusion in nickel. J Mater Sci 49, 4038–4044 (2014). https://doi.org/10.1007/s10853-014-8119-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8119-1

Keywords

Navigation