Skip to main content
Log in

Photocatalytic oxidation of butane by titania after reductive annealing

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Highly photoactive anatase and rutile modifications of titania were prepared by annealing the product of thermal hydrolysis of titania peroxo-complexes under different atmosphere (hydrogen, nitrogen, and oxygen) at 950 °C. The prepared samples were characterized by X-ray powder diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, electron spin resonance, scanning electron microscopy, and Brunauer–Emmett–Teller surface area and porosity measurement. The individual samples differ with phase composition (ratio of anatase and rutile) and color that determines the rate of reduction of TiO2 and is for reduced form of TiO2 characterized. The UV/Vis diffuse reflectance spectroscopy was employed to estimate band-gap energies. Annealed samples were deposited as a 300 μm thick layer on a glass plate (10 cm × 15 cm) for assessment of the kinetics of a photocatalytic degradation of butane in a gas phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang Z, Yang C, Lin T et al (2013) H-doped black titania with very high solar absorption and excellent photocatalysis enhanced by localized surface plasmon resonance. Adv Funct Mater 23(43):5444–5450

    Article  Google Scholar 

  2. Chen X, Liu L, Yu PY, Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331:746–750

    Article  Google Scholar 

  3. Naldoni A, Allieta M, Santangelo S et al (2012) Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J Am Chem Soc 134:7600–7603

    Article  Google Scholar 

  4. Liu G, Yin LC, Wang JQ et al (2012) A red anatase TiO2 photocatalyst for solar energy conversion. Energy Environ Sci 5:9603–9610

    Article  Google Scholar 

  5. Leshuk T, Parviz R, Everett P, Krishnakumar H, Varin RA, Gu F (2013) Photocatalytic activity of hydrogenated TiO2 ACS. Appl Mater Interfaces 5:1892–1895

    Article  Google Scholar 

  6. Murafa N, Stengl V, Houskova V (2009) Monodispersed spindle-like particles of titania. Microsc Microanal 15:1036–1037

    Article  Google Scholar 

  7. Stengl V, Houskova V, Bakardjieva S, Murafa N, Bezdicka P (2010) Niobium and tantalum doped titania particles. J Mater Res 25:2015–2024

    Article  Google Scholar 

  8. JCPDS (2000) PDF 2 database, release 50. International Centre for Diffraction Data, Newtown Square

  9. ICSD (2008) ICSD Database FIZ Karlsruhe, Germany

  10. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  Google Scholar 

  11. Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. 1. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380

    Article  Google Scholar 

  12. Christy AA, Kvalheim OM, Velapoldi RA (1995) Quantitative-analysis in diffuse-reflectance spectrometry—a modified Kubelka–Munk equation. Vib Spectrosc 9:19–27

    Article  Google Scholar 

  13. Orel ZC, Gunde MK, Orel B (1997) Application of the Kubelka–Munk theory for the determination of the optical properties of solar absorbing paints. Prog Org Coat 30:59–66

    Article  Google Scholar 

  14. Stengl V, Houskova V, Bakardjieva S, Murafa N, Havlin V (2008) Optically transparent titanium dioxide particles incorporated in poly(hydroxyethyl methacrylate) thin layers. J Phys Chem C 112:19979–19985

    Article  Google Scholar 

  15. Bakardjieva S, Subrt J, Stengl V, Dianez MJ, Sayagues MJ (2005) Photoactivity of anatase–rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase. Appl Catal B 58:193–202

    Article  Google Scholar 

  16. Lowell S, Shields JE (1998) Powder surface area and porosity. Chapman and Hall, London

    Google Scholar 

  17. Ohsaka T, Izumi F, Fujiki Y (1978) Raman spectrum of anatase, TiO2. J Raman Spectrosc 7:321–324

    Article  Google Scholar 

  18. Hardcastle FD (2011) Raman spectroscopy of titania (TiO2) nanotubular water-splitting catalysts. J Ark Acad Sci 65:43–48

    Google Scholar 

  19. Oviedo C (1993) Oxidation kinetics of pure titanium at low pressures. J Phys 5:A153–A154

    Google Scholar 

  20. Kuznetsov MV, Zhuravlev JF, Gubanov VA (1992) XPS analysis of adsorption of oxygen molecules on the surface of Ti and TiN x films in vacuum. J Electron Spectrosc Relat Phenom 58:169–176

    Article  Google Scholar 

  21. Godfroid T, Gouttebaron R, Dauchot JP, Leclere P, Lazzaroni R, Hecq M (2003) Growth of ultrathin Ti films deposited on SnO2 by magnetron sputtering. Thin Solid Films 437:57–62

    Article  Google Scholar 

  22. Kaliaguine S (1996) Application of surface science techniques in the field of zeolitic materials. Stud Surf Sci Catal 102:191–230

    Article  Google Scholar 

  23. Mathur S, Kuhn P (2006) CVD of titanium oxide coatings: comparative evaluation of thermal and plasma assisted processes. Surf Coat Technol 201:807–814

    Article  Google Scholar 

  24. Stefanov P, Shipochka M, Stefchev P, Raicheva Z, Lazarova V, Spassov L (2008) XPS characterization of TiO2 layers deposited on quartz plates. J Phys 100:012039

    Google Scholar 

  25. Kuch W, Schulze M, Schnurnberger W, Bolwin K (1993) XPS lineshape analysis of potassium coadsorbed with water on Ni(111). Surf Sci 287:600–604

    Article  Google Scholar 

  26. King BR, Patel HC, Gulino DA, Tatarchuk BJ (1990) Kinetic measurements of oxygen dissolution into niobium substrates: in situ X-ray photoelectron spectroscopy studies. Thin Solid Films 192:351–369

    Article  Google Scholar 

  27. Hatada R, Baba K, Morimura T, Hasaka M (2006) Deposition of Ti-containing diamond-like carbon films on interior surface of tubes by plasma source ion implantation. New Diamond Front Carbon Technol 16:55–60

    Google Scholar 

  28. Crist BV (2000) Handbook of monochromatic XPS spectra. Wiley, New York

    Google Scholar 

  29. Ookubo A, Kanezaki E, Ooi K (1990) ESR, XRD, and DRS studies of paramagnetic Ti3+ ions in a colloidal solid of titanium-oxide prepared by the hydrolysis of TiCl3. Langmuir 6:206–209

    Article  Google Scholar 

  30. Reddy KM, Manorama SV, Reddy AR (2003) Bandgap studies on anatase titanium dioxide nanoparticles. Mater Chem Phys 78:239–245

    Article  Google Scholar 

  31. Yuan H, Xu J (2010) Preparation, characterization and photocatalytic activity of nanometer SnO2. Int J Chem Eng Appl 1:241–246

    Google Scholar 

  32. Mäkie P, Persson P, Österlund L (2012) Solar light degradation of trimethyl phosphate and triethyl phosphate on dry and water-precovered hematite and goethite nanoparticles. J Phys Chem C 116:14917–14929

    Article  Google Scholar 

  33. Sanchez E, Lopez T (1995) Effect of the preparation method on the band gap of titania and platinum-titania sol-gel materials. Mater Lett 25:271–275

    Article  Google Scholar 

  34. Serpone N, Lawless D, Khairutdinov R (1995) Size effects on the photophysical properties of colloidal anatase TiO2 particles—size quantization or direct transitions in this indirect semiconductor. J Phys Chem 99:16646–16654

    Article  Google Scholar 

  35. Bhatkhande DS, Pangarkar VG, Beenackers A (2002) Photocatalytic degradation for environmental applications—a review. J Chem Technol Biotechnol 77:102–116

    Article  Google Scholar 

  36. Stengl V, Popelkova D, Vlacil P (2011) TiO2-graphene nanocomposite as high performance photocatalysts. J Phys Chem C 115:25209–25218

    Article  Google Scholar 

  37. Dozzi MV, Selli E (2013) Doping TiO2 with p-block elements: effects on photocatalytic activity. J Photochem Photobiol C 14:13–28

    Article  Google Scholar 

  38. Li ASW, Cummings KB, Roethling HP, Buettner GR, Chignell CF (1988) A spin-trapping database implemented on the IBM PC/AT. J Magn Reson 79:140–142

    Google Scholar 

  39. Brezova V, Dvoranova D, Stasko A (2007) Characterization of titanium dioxide photoactivity following the formation of radicals by EPR spectroscopy. Res Chem Intermed 33:251–268

    Article  Google Scholar 

  40. Stengl V, Houskova V, Bakardjieva S, Murafa N (2010) Photocatalytic degradation of acetone and butane on mesoporous titania layers. New J Chem 34:1999–2005

    Article  Google Scholar 

  41. Djeghri N, Formenti M, Juillet F, Teichner SJ (1974) Photointeraction on the surface of titanium dioxide between oxygen and alkanes. Faraday Discuss Chem Soc 58:185–193

    Article  Google Scholar 

  42. Shang J, Du Y, Xu Z (2002) Photocatalytic oxidation of heptane in the gas-phase over TiO2. Chemosphere 46:93–99

    Article  Google Scholar 

  43. Stengl V, Bakardjieva S, Grygar TM, Bludska J, Kormunda M (2013) TiO2-graphene oxide nanocomposite as advanced photocatalytic materials. Chem Cent J 7:1–12

    Article  Google Scholar 

  44. Stengl V, Bakardjieva S, Murafa N, Houskova V (2008) Hydrothermal synthesis of titania powders and their photocatalytic properties. Ceram Silik 52:278–290

    Google Scholar 

Download references

Acknowledgements

This work was supported by RVO 61388980. The authors acknowledge I. Jakubec for SEM characterization, P. Bezdička and Z. Hájková (IIC) for XRD and Raman analysis, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Václav Štengl.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 8864 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Štengl, V., Henych, J., Szatmáry, L. et al. Photocatalytic oxidation of butane by titania after reductive annealing. J Mater Sci 49, 4161–4170 (2014). https://doi.org/10.1007/s10853-014-8111-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8111-9

Keywords

Navigation