Skip to main content
Log in

Sheets of branched poly(lactic acid) obtained by one-step reactive extrusion–calendering process: physical aging and fracture behavior

Journal of Materials Science Aims and scope Submit manuscript

Abstract

The architectural modifications of a linear poly(D,L-Lactide) acid (PD,L-LA) commercial grade were induced by a one-step reactive extrusion–calendering process using a styrene-glycidyl acrylate copolymer as reactive agent. The melt degradation was counteracted by chain extension and branching reactions, leading to a stabilization of the melt properties and an increase in the molecular weight. For such modified samples [poly(lactic acid) (PLA)-reactive extrusion (REX)], the rate of physical aging at 30 °C was investigated during 1 week in order to simulate industrial storage conditions. Fracture behavior of “de-aged” and “controlled aged” (1 week) samples was investigated using the essential work of fracture (EWF) methodology and the critical tip opening displacement at the crack propagation onset, respectively. These analyses were complemented by digital image correlation analysis and inspection of the fractured surfaces by scanning electronic microscopy. As a result of the architectural modifications, the entanglement network density was increased. Those accounted for a slight decrease in the physical aging rate. Under uniaxial loading, aged reactive extrusion (REX) samples exhibited multiple crazing, leading to a slight increase in strain at break. Nevertheless, as a result of a similar dynamic environment of the entangled polymer coils, de-aged REX samples disclosed similar mechanical properties as compared to their neat counterparts. Regarding de-aged samples, the EWF analysis revealed no changes in the work required for the onset of crack propagation. However, the energy consumed up to the onset of crack propagation of aged PLA-REX samples decreased due to an apparently decreased network extensibility, promoting a premature craze–crack transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Miyata T, Masuko T (1998) Crystallization behaviour of poly(L-lactide). Polymer 39:5515–5521

    Article  Google Scholar 

  2. Nyambo C, Misra M, Mohanty AK (2012) Toughening of brittle poly(lactide) with hyperbranched poly(ester-amide) and isocyanate-terminated prepolymer of polybutadiene. J Mater Sci 47:5158–5168

    Article  Google Scholar 

  3. Pan P, Zhu B, Dong T et al (2008) Conformational and microstructural characteristics of poly(L-lactide) during glass transition and physical aging. J Chem Phys 129:184902

    Article  Google Scholar 

  4. Gamez-Perez J, Velazquez-Infante JC, Franco-Urquiza E et al (2011) Fracture behavior of quenched poly(lactic acid). Express Polym Lett 5:82–91

    Article  Google Scholar 

  5. Inoue Y, Pan PJ, Zhu B (2007) Enthalpy relaxation and embrittlement of poly(L-lactide) during physical aging. Macromolecules 40:9664–9671

    Article  Google Scholar 

  6. Lim LT, Cink K, Vanyo T (2010) Processing of poly(lactic acid). In: Auras R, Lim LT, Selke SEM HT (eds) Poly(lactic acid): synthesis, structures, properties, processing and applications. Wiley, Hoboken, USA, pp 191–216

    Google Scholar 

  7. Lim LT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33:820–852

    Article  Google Scholar 

  8. Joziasse CAP, Veenstra H, Grijpma DW, Pennings AJ (1996) On the chain stiffness of poly(lactide)s. Macromol Chem Phys 197:2219–2229

    Article  Google Scholar 

  9. Fetters LJ, Lohse DJ, Richter D, Witten TA, Zirkel A (1994) Connection between polymer molecular-weight density, chain dimensions, and melt viscoelastic properties. Macromolecules 27:4639–4647

    Article  Google Scholar 

  10. Grijpma DW, Penning JP, Pennings AJ (1994) Chain entanglement, mechanical-properties and drawability of poly(lactide). Colloid Polym Sci 272:1068–1081

    Article  Google Scholar 

  11. Egan BJ, Delatycki O (1995) The morphology, chain structure and fracture-behavior of high-density polyethylene. 2 Static fatigue fracture testing. J Mater Sci 30:3351–3357

    Article  Google Scholar 

  12. Na B, Lv RH, Zhang Q, Fu Q (2007) Macroscopic deformation and failure of ductile polyethylene: the dominant role of entangled amorphous network. Polym J 39:834–840

    Article  Google Scholar 

  13. Tangpasuthadol V, Shefer A, Hooper KA, Kohn J (1996) Thermal properties and physical ageing behaviour of tyrosine-derived polycarbonates. Biomaterials 17:463–468

    Article  Google Scholar 

  14. Raquez JM, Narayan R, Dubois P (2008) Recent advances in reactive extrusion processing of biodegradable polymer-based compositions. Macromol Mater Eng 293:447–470

    Article  Google Scholar 

  15. Carlson D, Dubois P, Nie L, Narayan R (1998) Free radical branching of polylactide by reactive extrusion. Polym Eng Sci 38:311–321

    Article  Google Scholar 

  16. Cailloux J, Santana OO, Franco-Urquiza E et al (2013) Sheets of branched poly(lactic acid) obtained by one step reactive extrusion calendering process: melt rheology analysis. Express Polym Lett 7:304–318

    Article  Google Scholar 

  17. Nature Works (2005) PLA Polymer 4032D. http://www.natureworksllc.com/Technical-Resources/4-Series. Accessed 14 February 2011

  18. Perego G, Cella GD (2010) Mechanical Properties. In: Auras R, Lim LT, Selke SEM HT (eds) Poly(lactic acid): synthesis, structures, properties, processing and applications. Wiley, Hoboken USA, pp 141–153

    Chapter  Google Scholar 

  19. Lu HB, Nutt S (2003) Restricted relaxation in polymer nanocomposites near the glass transition. Macromolecules 36:4010–4016

    Article  Google Scholar 

  20. Hay JN (1995) The physical aging of amorphous and crystalline polymers. Pure Appl Chem 67:1855–1858

    Article  Google Scholar 

  21. Lach R, Schneider K, Weidisch R, Janke A, Knoll K (2005) Application of the essential work of fracture concept to nanostructured polymer materials. Eur Polym J 41:383–392

    Article  Google Scholar 

  22. Mazidi MM, Aghjeh MKR, Abbasi F (2012) Evaluation of fracture toughness of ABS polymers via the essential work of fracture (EWF) method. J Mater Sci 47:6375–6386

    Article  Google Scholar 

  23. Maspoch ML, Henault V, Ferrer-Balas D, Velasco JI, Santana OO (2000) Essential work of fracture on PET films: influence of the thickness and the orientation. Polym Test 19:559–568

    Article  Google Scholar 

  24. Ferrer-Balas D, Maspoch ML, Martinez AB, Santana OO (2001) Influence of annealing on the microstructural, tensile and fracture properties of polypropylene films. Polymer 42:1697–1705

    Article  Google Scholar 

  25. Clutton EQ (2001) Essential Work of Fracture. In: Moore DR, Pavan A, Williams JG (eds) Fracture mechanics testing methods for polymers, adhesive and composites. Elsevier, Oxford, pp 177–202

    Chapter  Google Scholar 

  26. Anderson TL (1995) Fracture mechanics: fundamentals and applications, 2nd edn. CRC Press, Boca Raton (USA)

    Google Scholar 

  27. Inoue Y, Pan P, Kai W, Zhu B, Dong T (2007) Polymorphous crystallization and multiple melting behavior of Poly(L-lactide): molecular weight dependence. Macromolecules 40:6898–6905

    Article  Google Scholar 

  28. Pan PJ, Zhu B, Kai WH, Dong T, Inoue Y (2008) Polymorphic transition in disordered poly(L-lactide) crystals induced by annealing at elevated temperatures. Macromolecules 41:4296–4304

    Article  Google Scholar 

  29. Gong SQ, Pilla S, Kramschuster A, Yang LQ, Lee J, Turng LS (2009) Microcellular injection-molding of polylactide with chain-extender. Mat Sci Eng C-Bio S 29:1258–1265

    Article  Google Scholar 

  30. Kim SH, Kim YH (1999) Direct condensation polymerization of lactic acid. Macromol Symp 144:277–287

    Article  Google Scholar 

  31. Struik LCE (1986) Physical Aging: Influence on the Deformation Behavior of Amorphous Polymers. In: Brostow W, Corneliussen RD (eds) Failure of plastics. Hanser, Munich, pp 209–234

    Google Scholar 

  32. Hutchinson JM, Smith S, Horne B, Gourlay GM (1999) Physical aging of polycarbonate: enthalpy relaxation, creep response, and yielding behavior. Macromolecules 32:5046–5061

    Article  Google Scholar 

  33. Hsiao CC, Sauer JA (1950) On crazing of linear high polymers. J Appl Phys 21:1071–1083

    Article  Google Scholar 

  34. Deblieck RAC, van Beek DJM, Remerie K, Ward IM (2011) Failure mechanisms in polyolefines: the role of crazing, shear yielding and the entanglement network. Polymer 52:2979–2990

    Article  Google Scholar 

  35. Yoshioka T, Kawazoe N, Tateishi T, Chen GP (2011) Effects of structural change induced by physical aging on the biodegradation behavior of PLGA films at physiological temperature. Macromol Mater Eng 296:1028–1034

    Article  Google Scholar 

  36. Stoclet G, Seguela R, Lefebvre JM, Rochas C (2010) New insights on the strain-induced mesophase of poly(D, L-lactide) in situ WAXS and DSC study of the thermo-mechanical stability. Macromolecules 43:7228–7237

    Article  Google Scholar 

  37. Velazquez-Infante JC, Gamez-Perez J, Franco-Urquiza EA, Santana OO, Carrasco F, Maspoch ML (2013) Effect of the unidirectional drawing on the thermal and mechanical properties of PLA films with different L-isomer content. J Appl Polym Sci 127:2661–2669

    Article  Google Scholar 

  38. KargerKocsis J, Moskala EJ (1997) Relationships between molecular and plane-stress essential work of fracture parameters in amorphous copolyesters. Polym Bull 39:503–510

    Article  Google Scholar 

  39. Martinez AB, Gamez-Perez J, Sanchez-Soto M, Velasco JI, Santana OO, Maspoch ML (2009) The essential work of fracture (EWF) method—analyzing the post-yielding fracture mechanics of polymers. Eng Fail Anal 16:2604–2617

    Article  Google Scholar 

  40. Karger-Kocsis J, Czigany T (2000) Strain rate dependence of the work of fracture response of an amorphous poly(ethylene-naphthalate) (PEN) film. Polym Eng Sci 40:1809–1815

    Article  Google Scholar 

  41. Chen HB, Wu JS (2007) Understanding the underlying physics of the essential work of fracture on the molecular level. Macromolecules 40:4322–4326

    Article  Google Scholar 

  42. Basu S, Mahajan DK, Van der Giessen E (2005) Micromechanics of the growth of a craze fibril in glassy polymers. Polymer 46:7504–7518

    Article  Google Scholar 

  43. Wu JS, Mai YW (1996) The essential fracture work concept for toughness measurement of ductile polymers. Polym Eng Sci 36:2275–2288

    Article  Google Scholar 

  44. Hashemi S (1997) Work of fracture of PBT/PC blend: effect of specimen size, geometry, and rate of testing. Polym Eng Sci 37:912–921

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the MICINN (Spain), the projects financial support MAT2010-19721-C02-01, MAT2010-19721-C02-02 and BASF® for kindly supplying the reactive agent.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. O. Santana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cailloux, J., Santana, O.O., Franco-Urquiza, E. et al. Sheets of branched poly(lactic acid) obtained by one-step reactive extrusion–calendering process: physical aging and fracture behavior. J Mater Sci 49, 4093–4107 (2014). https://doi.org/10.1007/s10853-014-8101-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8101-y

Keywords

Navigation