Skip to main content

Advertisement

Log in

Processing, spark plasma sintering, and mechanical behavior of alumina/titanium composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper focuses on the study of the processing and mechanical properties, (flaw tolerance and R-curve behavior) of alumina–titanium ceramic–metal composites produced by spark plasma sintering. In order to obtain homogenously dispersed composites, a rheological study was carried out by measuring the flow behavior in different conditions of solid content, amount of dispersant and shear stress. It has been found that, with the suitable conditions (80 wt% solids and 3 wt% deflocculant), a ceramic–metal homogeneously dispersed (Al2O3–Ti) composite can be obtained. After sintering, the composites were mechanically tested and the cermet showed an important improvement in the flaw tolerance and R-curve behavior when compared with the monolithic material. It has been demonstrated by scanning electronic microscopy that this improvement is a consequence of the reinforcement mechanisms provided by the metallic particles that interact with the crack producing a notable increase in toughness up to ~8 MPa m1/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yvon P, Carré F (2009) Structural materials challenges for advanced reactor systems. J Nucl Mater 385:217–222

    Article  Google Scholar 

  2. Bartolome JF, Montero I, Diaz M, Lopez-Esteban S, Moya JS (2004) Accelerated aging in 3-mol%-yttria-stabilized tetragonal zirconia ceramics sintered in reducing conditions. J Am Ceram Soc 87:2282–2285

    Article  Google Scholar 

  3. Dusza J, Steen M (1999) Fractography and fracture mechanics property assessment of advanced structural ceramics. Int Mater Rev 44:165–216

    Article  Google Scholar 

  4. Gutierrez-Gonzalez CF, Bartolome JF (2008) Damage tolerance and R-curve behavior of Al2O3–ZrO2–Nb multiphase composites with synergistic toughening mechanism. J Mater Res 23:570–578

    Article  Google Scholar 

  5. Moya JS, Rodriguez-Suarez T, Lopez-Esteban S, Pecharroman C, Torrecillas R, Diaz LA et al (2007) Diamond-like hardening of alumina/Ni nanocomposites. Adv Eng Mater 9:898–901

    Article  Google Scholar 

  6. Esteban-Betegon F, Lopez-Esteban S, Requena J, Pecharroman C, Moya JS, Conesa JC (2006) Obtaining Ni nanoparticles on 3Y-TZP powder from nickel salts. J Am Ceram Soc 89:144–150

    Article  Google Scholar 

  7. Fernandez-García E, Gutiérrez-González CF, Fernández A, Torrecillas R, López-Esteban S (2013) Processing and spark plasma sintering of zirconia/titanium cermets. Ceram Int 36:6931–6936

    Article  Google Scholar 

  8. Raddatz O, Schneider GA, Mackens W, Voss H, Claussen N (2000) Bridging stresses and R-curves in ceramic/metal composites. J Eur Ceram Soc 20:2261–2273

    Article  Google Scholar 

  9. Flinn BD, Ruhle M, Evans AG (1989) Toughening in composites of Al2O3 reinforced with Al. Acta Met Mater 37:3001–3006

    Article  Google Scholar 

  10. Gutierrez-Gonzalez CF, Agouram S, Torrecillas R, Moya JS, Lopez-Esteban S (2012) Ceramic/metal nanocomposites by lyophilization: processing and HRTEM study. Mater Res Bull 47:285–289

    Article  Google Scholar 

  11. Moya JS, Lopez-Esteban S, Pecharroman C (2007) The challenge of ceramic/metal microcomposites and nanocomposites. Prog Mater Sci 52:1017–1090

    Article  Google Scholar 

  12. Lopez-Esteban S, Rodriguez-Suarez T, Esteban-Betegon F, Pecharroman C, Moya JS (2006) Mechanical properties and interfaces of zirconia/nickel in micro- and nanocomposites. J Mater Sci 41:5194–5199. doi:10.1007/s10853-006-0441-9

    Article  Google Scholar 

  13. Lange FF, Lam DCC, Sudre O, Flinn BD, Folsom C, Velamakanni BV et al (1991) Powder processing of ceramic matrix composites. Mater Sci Eng A 144:143–152

    Article  Google Scholar 

  14. Zein Eddine W, Matteazzi P, Celis JP (2013) Mechanical and tribological behavior of nanostructured copper–alumina cermets obtained by pulsed electric current sintering. Wear 297:762–773

    Article  Google Scholar 

  15. Rodriguez-Suarez T, Díaz LA, Torrecillas R, Lopez-Esteban S, Tuan WH, Nygren M et al (2009) Alumina/tungsten nanocomposites obtained by spark plasma sintering. Compos Sci Technol 69:2467–2473

    Article  Google Scholar 

  16. Rodriguez-Suarez T, Bartolomé JF, Smirnov A, Lopez-Esteban S, Torrecillas R, Moya JS (2011) Sliding wear behaviour of alumina/nickel nanocomposites processed by a conventional sintering route. J Eur Ceram Soc 31:1389–1395

    Article  Google Scholar 

  17. Chmielewski M, Pietrzak K (2007) Processing, microstructure and mechanical properties of Al2O3–Cr nanocomposites. J Eur Ceram Soc 27:1273–1279

    Article  Google Scholar 

  18. Stech M, Rodel J (1996) Method for measuring short-crack R-curves without calibration parameters: case studies on alumina and alumina aluminum composites. J Am Ceram Soc 79:291–297

    Article  Google Scholar 

  19. Sbaizero O, Pezzotti G, Nishida T (1998) Fracture energy and R-curve behavior of Al2O3/Mo composites. Acta Mater 46:681–687

    Article  Google Scholar 

  20. Gunther R, Klassen T, Dickau B, Gartner F, Bartels A, Bormann R (2001) Advanced alumina composites reinforced with titanium-based alloys. J Am Ceram Soc 84:1509–1513

    Article  Google Scholar 

  21. Edalati K, Iwaoka H, Horita Z, Konno M, Sato T (2011) Unusual hardening in Ti/Al2O3 nanocomposites produced by high-pressure torsion followed by annealing. Mater Sci Eng A 529:435–441

    Article  Google Scholar 

  22. Mas-Guindal MJ, Benko E, Rodríguez MA (2008) Nanostructured metastable cermets of Ti–Al2O3 through activated SHS reaction. J Alloy Compd 454:352–358

    Article  Google Scholar 

  23. Braichotte G, Cizeron G (1989) Sintering of (alumina + titanium) powder mixtures and elaboration of the corresponding cermets. J Mater Sci 24:3123–3136. doi:10.1007/BF01139030

    Article  Google Scholar 

  24. Wu S, Gesing AJ, Travitzky NA, Claussen N (1991) Fabrication and properties of Al-infiltrated RBAO-based composites. J Eur Ceram Soc 7:277–281

    Article  Google Scholar 

  25. Toy C, Scott WD (1990) Ceramic-metal composite produced by melt infiltration. J Am Ceram Soc 73:97–101

    Article  Google Scholar 

  26. Naga SM, El-Maghraby A, El-Rafei AM (2007) Properties of ceramic–metal composites formed by reactive metal penetration. Am Ceram Soc Bull 86:9301–9313

    Google Scholar 

  27. Loehman RE, Ewsuk K, Tomsia AP (1996) Synthesis of Al2O3–Al composites by reactive metal penetration. J Am Ceram Soc 79:27–32

    Article  Google Scholar 

  28. Claussen N, Knechtel M, Prielipp H, Rodel J (1994) A strong variant of cermets. Ber Dtsch Keram Ges 71:301–303

    Google Scholar 

  29. Ko SJ, Min KH, Kim YD, Moon IH (2002) A study on the fabrication of Al2O3/Cu nanocomposite and its mechanical properties. J Ceram Process Res 3:192–194

    Google Scholar 

  30. Sampath S, Herman H, Shimoda N, Saito T (1995) Thermal spray processing of FGM’s. MRS Bull 20:27–31

    Google Scholar 

  31. Peytour C, Barbier F, Berthet P, Revcolevschi A (1990) Characterization of Al2O3/TA6V and ZrO2/TA6V ceramic-metal interfaces. J Phys Colloq C1:897–902

    Google Scholar 

  32. Ji H, Jones S, Marquis PM (1995) Characterization of the interaction between molten titanium alloy and Al2O3. J Mater Sci 30:5617–5620. doi:10.1007/BF00356694

    Article  Google Scholar 

  33. Lu H, Bao CL, Shen DH, Zhang XJ, Cui YD, Lin ZD (1995) Study of the Ti/Al2O3 interface. J Mater Sci 30:339–346. doi:10.1007/BF00354393

    Article  Google Scholar 

  34. Wang Z, Shi GP, Zhao J, Xing GH (2009) Mechanism and properties of Ti/Al2O3 composites by spark plasma sintering technique. Rare Met Mater Eng 38:450–453

    Google Scholar 

  35. Braun LM, Bennison SJ, Lawn BR (1992) Objective evaluation of short-crack toughness curves using indentation flaws—case-study on alumina-based ceramics. J Am Ceram Soc 75:3049–3057

    Article  Google Scholar 

  36. Kaliszewski MS, Behrens G, Heuer AH, Shaw MC, Marshall DB, Dransmann GW et al (1994) Indentation studies on Y2O3-stabilized ZrO2.1. Development of indentation-induced cracks. J Am Ceram Soc 77:1185–1193

    Article  Google Scholar 

  37. Smith SM, Scattergood RO (1992) Crack-shape effects for indentation fracture-toughness measurements. J Am Ceram Soc 75:305–315

    Article  Google Scholar 

  38. Li CW, Lee DJ, Lui SC (1992) R-Curve behavior and strength for in situ reinforced silicon nitrides with different microstructures. J Am Ceram Soc 75:1777–1785

    Article  Google Scholar 

  39. Newman JC, Raju IS (1981) An empirical stress-intensity factor equation for the surface crack. Eng Fract Mech 15:185–192

    Article  Google Scholar 

  40. Samsonov GV (1968) Handbook of the physicochemical properties of the elements. Plenum Press, New York

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish Ministry of Science and Innovation (MICINN) under the Project MAT2009-14542-C02-02 and by the Spanish Ministry of Economy and competitiveness (MINECO) under the Project MAT2012‐38645. E. Fernandez-Garcia acknowledges CSIC and ESF for the concession of a JAE-PreDoc 2010 grant. C.F. Gutierrez-Gonzalez acknowledges CSIC and ESF for the concession of a JAE-Doc 2009 grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. F. Gutierrez-Gonzalez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutierrez-Gonzalez, C.F., Fernandez-Garcia, E., Fernandez, A. et al. Processing, spark plasma sintering, and mechanical behavior of alumina/titanium composites. J Mater Sci 49, 3823–3830 (2014). https://doi.org/10.1007/s10853-014-8095-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8095-5

Keywords

Navigation