Skip to main content
Log in

Crystallization kinetics of neodymium disilicate obtained by polymeric xerogels

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The kinetics of tetragonal Nd2Si2O7 crystallization from polymeric xerogels was investigated under non-isothermal conditions via differential thermal analysis (DTA). The polymeric xerogels were prepared by the Pechini sol–gel method from tetraethoxysilane and neodymium nitrate. The crystallization fraction and rate of tetragonal Nd2Si2O7 were determined based on the exothermic DTA data. The activation energy of tetragonal Nd2Si2O7 crystallization, which is calculated by the Kissinger equation, is 673 kJ/mol. The crystallization process of tetragonal Nd2Si2O7 could involve the nucleation and three-dimensional growth that follows the diffusion-controlled mechanism when the nucleation rate increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ohashi H, Alba MD, Becerro AI et al (2007) Structural study of the Lu2Si2O7–Sc2Si2O7 system. J Solid State Chem 68:464–469

    Article  Google Scholar 

  2. Maqsood A (2009) Phase transformations in Ho2Si2O7 ceramics. J Alloy Compd 471:432–434

    Article  Google Scholar 

  3. Zhao C, Wang F, Sun YJ et al (2013) Synthesis and characterization of β-Yb2Si2O7 powders. Ceram Inter 39:5805–5811

    Article  Google Scholar 

  4. Lee KN, Fox DS, Bansal NP (2005) Rare earth silicate environmental barrier coatings for SiC/SiC composites and Si3N4 ceramics. J Eur Ceram Soc 25:1705–1715

    Article  Google Scholar 

  5. Ueno S, Ohji T, Lin H (2007) Recession behavior of a silicon nitride with multi-layered environmental barrier coating system. Ceram Inter 33:859–862

    Article  Google Scholar 

  6. Maier N, Nickel KG, Rixecker G (2007) High temperature water vapor corrosion of rare earth disilicates (Y, Yb, Lu)2Si2O7 in the presence of Al(OH)3 impurities. J Eur Ceram Soc 27:2705–2713

    Article  Google Scholar 

  7. Sun HT, Fujii M, Nitta N et al (2008) Large-scale controllable synthesis and characterization of ytterbium silicate nanostructures. J Am Ceram Soc 91:4158–4161

    Article  Google Scholar 

  8. Sun ZQ, Zhou YC, Li MS (2006) Low-temperature synthesis and sintering of γ-Y2Si2O7. J Mater Res 21:1443–1450

    Article  Google Scholar 

  9. Escudero A, Alba MD, Becerro AI (2007) Polymorphism in the Sc2Si2O7–Y2Si2O7 system. J Solid State Chem 180:1436–1445

    Article  Google Scholar 

  10. Boyer D, Derby B (2003) Yttrium silicate powers produced by the sol–gel method, structural and thermal characterization. J Am Ceram Soc 86:1595–1597

    Article  Google Scholar 

  11. Wen HM, Dong SM, He P et al (2007) Sol-gel synthesis and characterization of ytterbium silicate powers. J Am Ceram Soc 90:4043–4046

    Google Scholar 

  12. Tang XP, Gao YF, Chen HF et al (2012) Hydrothermal synthesis of lutetium disilicate nanoparticles. J Solid State Chem 188:38–43

    Article  Google Scholar 

  13. Felsche J, Hirsiger W (1969) The polymorphs of the rare earth pyrosilicates RE2Si2O7, [RE: La, Ce, Pr, Nd, Sm]. J Less Common Met 18:131–137

    Article  Google Scholar 

  14. Maqsood A, Wanklyn BM, Garton G (1979) Flux growth of polymorphic rare-earth disilicates, R2Si2O7 (R = Tm, Er, Ho, Dy). J Crys Growth 46:671–680

    Article  Google Scholar 

  15. Fleet E, Liu X (2004) A new rare earth disilicate (REE2Si2O7; REE = Dy, Tm, Lu; type-L): evidence for non-quenchable 10 GPa polymorph with silicon in fivefold trigonal bipyramidal coordination? Am Min 89:396–404

    Google Scholar 

  16. Hong ZL, Yoshida H, Ikuhara Y et al (2002) Effect of additives on sintering behavior and strength retention in silicon nitride with RE-disilicate. J Eur Ceram Soc 22:527–534

    Article  Google Scholar 

  17. Zhang PF, Zhang LT, Yin XW (2010) Fabrication of porous Lu2Si2O7–Si3N4 composite ceramics. J Mater Sci Technol 26:449–453

    Article  Google Scholar 

  18. Carrión AJFF, Escudero A, Suchomel MR et al (2012) Structural and kinetic study of phase transitions in LaYSi2O7. J Eur Ceram Soc 32:2477–2486

    Article  Google Scholar 

  19. Pechini MP (1967) Method of preparing lead alkaline earth titanates and niobates and coating method using the same to from a capacitor, US Patent 3330697

  20. Kepinski L, Wołcyrz M, Drozd M (2006) Interfacial reactions and silicate formation in highly dispersed Nd2O3–SiO2 system. Mater Chem Phys 96:353–360

    Article  Google Scholar 

  21. Tkalcec E, Kurajica S, Ivankovic H (2005) Diphasic aluminosilicate gels with two stage mullitization in temperature range of 1200–1300 °C. J Eur Ceram Soc 25:613–626

    Article  Google Scholar 

  22. Johnson BR, Kriven WM, Schneider J (2001) Crystal structure development during devitrification of quenched mullite. J Eur Ceram Soc 21:2541–2562

    Article  Google Scholar 

  23. Takei T, Kameshima Y, Yasumori A et al (2001) Crystallization kinetics of mullite from Al2O3–SiO2 glasses under non-isothermal conditions. J Eur Ceram Soc 21:2487–2493

    Article  Google Scholar 

  24. Johnson WA, Mehl KF (1939) Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min, Metall Pet Eng 135:416–458

    Google Scholar 

  25. Avrami M (1939) Kinetics of phase change. I, J Chem Phys 7:1103–1112

    Article  Google Scholar 

  26. Henderson DW (1979) Experimental analysis of non-isothermal transformations involving nucleation and growth. J Therm Anal 15:325–331

    Article  Google Scholar 

  27. Henderson DW (1979) Thermal analysis of non-isothermal crystallization kinetics in glass forming liquids. J Non-Cryst Solids 30:301–315

    Article  Google Scholar 

  28. Maqueda LAP, Criado JM, Málek J (2003) Combined kinetic analysis for crystallization kinetics of non-crystalline solids. J Non-Cryst Solids 320:84–91

    Article  Google Scholar 

  29. Yousef ES, Alsalami AE, Shaaban ER (2010) A TEM study and non-isothermal crystallization kinetic of tellurite glass-ceramics. J Mater Sci 45:5929. doi:10.1007/s10853-010-4677-z

    Article  Google Scholar 

  30. Cheng KG (2001) Evaluation of crystallization kinetics of glasses by non-isothermal analysis. J Mater Sci 36:1043. doi:10.1023/A:1004804730399

    Article  Google Scholar 

  31. Shaaban ER, Ishu Kansal M, Shapaan JM et al (2009) Thermal stability and crystallization kinetics of ternary Se–Te–Sb semiconducting glassy alloys. J Thermal Anal Calorim 98:347–354

    Article  Google Scholar 

  32. Majhi K, Varma KBR (2009) Crystallization kinetic studies of CaBi2B2O7 glasses by non-isothermal methods. J Mater Sci 44:385. doi:10.1007/s10853-008-3149-1

    Article  Google Scholar 

  33. Wei X, Wang XF, Wang XF et al (2010) Crystallization kinetics of an amorphous Al75Ni10Ti10Zr5 alloy. J Mater Sci 45:6593. doi:10.1007/s10853-010-4748-1

    Article  Google Scholar 

  34. OriginLab: Origin and OriginPro—Data analysis and graphing software. http://www.originlab.com. Accessed 16 Sept 2013

  35. Cabot A, Arbiol J, Rossinyol E et al (2004) Synthesis of tin oxide nanostructures with controlled particle size using mesoporous frameworks. Electrochem Solid-State Lett 7:93–97

    Article  Google Scholar 

  36. Lu J, Fang ZZ (2006) Synthesis and characterization of nanoscaled cerium (IV) oxide via a solid-state mechanochemical method. J Am Ceram Soc 89:842–847

    Article  Google Scholar 

  37. Boccaccini AR, Khalil TK, Bucker M (1999) Activation energy for the mullitization of a diphasic gel obtained from fumed silica and boehmite sol. Mater Lett 38:116–120

    Article  Google Scholar 

  38. Augis JA, Bennet JE (1978) Calculation of the avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J Thermal Anal Calorim 13:283–292

    Article  Google Scholar 

  39. Ray CS, Yang Q, Huang WH et al (1996) Surface and internal crystallization in glasses as determined by differential thermal analysis. J Am Ceram Soc 79:3155–3160

    Article  Google Scholar 

  40. Okada K, Kaneda J, Kameshima Y et al (2003) Crystallization kinetics of mullite from polymeric Al2O3–SiO2 xerogels. Mater Lett 57:3155–3159

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Major Scientific and Technological Projects of Guangdong Province, China (No. 2012B091000026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanmin Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ke, S., Wang, Y. & Pan, Z. Crystallization kinetics of neodymium disilicate obtained by polymeric xerogels. J Mater Sci 49, 3736–3741 (2014). https://doi.org/10.1007/s10853-014-8085-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8085-7

Keywords

Navigation